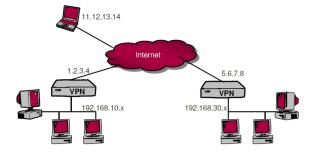
Virtual Private Networks with IPsec

Chapter 6

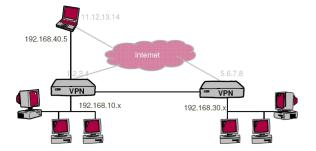
Network & Security Gildas Avoine

SUMMARY OF CHAPTER 6

- VPN Primer and IPsec Primer
- Security Policy Database and Security Associations
- AH and ESP
- Transport and Tunnel Modes
- IPsec Used Behind NAT
- Conclusion and References


VPN PRIMER AND IPSEC PRIMER

VPN Primer and IPsec Primer


- Security Policy Database and Security Associations
- AH and ESP
- Transport and Tunnel Modes
- IPsec Used Behind NAT
- Conclusion and References

- VPNs extend a private network across a public network.
- VPN software on routers or workstations (eg. laptop).
- Packet encapsulation for their journey across the Internet.
- Scenarios.
 - Interconnection of distant sites through the Internet.
 - Connection of an itinerant laptop to a private network.

Connection without VPN

Connection with VPN

Microsoft: PPTP (Point to Point Tunneling Protocol).

■ IETF: L2TP (Layer 2 Tunneling Protocol).

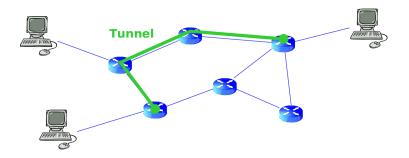
 Result of merging Cisco's L2F (Layer 2 forwarding) protocol and Microsoft's PPTP protocol.

■ IETF: IPsec (IP Security), around 1993.

IPsec Basics

THE standard VPN protocol.

- Standard developed by the IETF.
- Open and extendable format.
- Public algorithms for confidentiality, authentication, integrity.


Two operation modes: tunnel, transport.

- Two secure protocols: ESP, AH.
- A key exchange protocol: IKE (out of the lecture's scope).

Routing

Operation modes:

- Transport: only protects the packet's payloads.
- Tunnel: the entire packet is encapsulated in a new packet.

SECURITY POLICY DATABASE AND SECURITY ASSOCIATIONS

VPN Primer and IPsec Primer

Security Policy Database and Security Associations

- AH and ESP
- Transport and Tunnel Modes
- IPsec Used Behind NAT
- Conclusion and References

• A Security Policy Database describes what should be protected.

 Each router contains such an SPD defining which packet needs to be secured, according to destination address, source address, protocol, etc.

Examples.

- Secure all traffic.
- Secure packets sent to bank offices but not to internet.
- Secure UDP.
- Secure TCP but not SSL.

Security Associations (1/2)

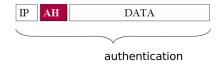
- A Security Association describes how the traffic should be protected.
- For each protected communication, the SA memorizes the algorithms, the keys, the validity periods of the keys, the sequence numbers and the partner's identity.
- One SA for each unidirectional flow: a TCP connection requires a SA for each direction.
- One SA per destination, per protocol (AH or ESP), per port.

Source decides which packets must be processed with which SA.

- SAs are identified by a Security Parameter Index (SPI).
 - The source indicates the SPI on all packets that it sends.
 - The destination uses the SPI to find the SA that describes how to deal with a received packet.

Computers establish Security Associations (SA) using the protocol IKE.

AH AND ESP


VPN Primer and IPsec Primer

Security Policy Database and Security Associations

AH and ESP

- Transport and Tunnel Modes
- IPsec Used Behind NAT
- Conclusion and References

The addition of an authentication header allows the recipient to verify the packet's authenticity and integrity.

Authentication Header (AH)

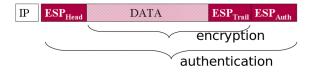
Authentication Header format																																	
Offsets	Octet ₁₆	5 0						1								2									3								
Octet ₁₆	Bit ₁₀	0	1	2	3	4	5	6	7	8	9	1	10 11	1	2 13	14	15	16	17	18	19	20	21	22	23	24	2	26	27	28	29	30	3
0	0	Next Header								Payload Len							Reserved																
4	32													Sec	curity	Pa	ram	eter	rs In	dex	(SP	1)											
8	64														s	equ	enc	e N	umb	er:													
с	96													1	nteg	rity	Che	ck \	/alu	(10	V)												

- Next Header. 8 bits. Specifies the next encapsulated protocol (ICMP, TCP, UDP,...).
- Length. 8 bits. Size of the Authentication Data payload.
- Security Parameters Index. 32 bits. Contains a pseudo random value used to identify the security association for this datagram.
- **Sequence number**. 32 bits. Avoid replay-attacks.
- Authentication Data. Variable length. This field must contain a keyed-hash value that is a multiple of 32-bit words.

Authentication Header (AH)

• Authentication is calculated on the following information.

- The data that follow the AH.
- The AH header itself: the authentication field is set to zero to compute the authentication data.
- The important fields of the IP header: source, destination, protocol, length, version, etc.


Version IH	IL	Type of Service	Total Length								
Ide	entif	ication	Flags	Fragr	nent Offset						
Time to Liv	ve	Protocol	Header Checksum								
	Source Address										
	Destination Address										
		Options		Padding							

Immutable Mutable

(zeroed prior to Integrity Check Value calculation).

- The algorithm used to generate the authentication data is negotiated when the SA is created.
- Two algorithms must be available.
 - HMAC-SHA-96.
 - HMAC-MD5-96.
- $HMAC(K,m) = H((K \text{ xor opad}) \parallel H((K \text{ xor ipad}) \parallel m))$
- HMAC-SHA1-96 denotes HMAC computed with H=SHA1 and output truncated to 96 bits.

Encapsulated Security Payload (ESP)

- The ESP header allows packet encryption and authentication.
- Encryption is done only on the encapsulated data and the trailer, not on the header's fields.
- Optional authentication is done on the ESP header and all that follow, but not on the IP header.

Encapsulated Security Payload (ESP)

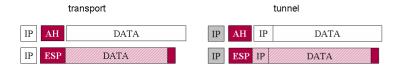
									En	cap.	sula	ati	ing S	ecu	rity	Paj	loi	ad f	orn	nat														
Offsets	Octet ₁₆					D				1									2							3								
Octet ₁₆	Bit ₁₀	0	1	2	3	4	5	6	7	8	9	1	0 11	12	13	14	15	5 16	17	18	19	9 2	20 2	1 2	22	23	24	2!	5 26	2	7 2	3 29	9 3	0 31
0	0		Security Parameters Index (SPI)																															
4	32		Sequence Number																															
8	64		Device of data																															
			Payload data																															
															Pac	ldin	, (0	-25	5 00	tets)													
				Pad Length Next Header																														
														In	tegi	rity	Che	ck V	/alu	ie (li	cv)													

The mandatory algorithms are:

- Encryption: DES-CBC, NULL (RFC 2410).
- Authentication: HMAC-SHA-96 (RFC2404), HMAC-MD5-96 (RFC2403), NULL.
- NULL encryption and NULL authentication in the same SA is not allowed.

TRANSPORT AND TUNNEL MODES

- VPN Primer and IPsec Primer
- Security Policy Database and Security Associations
- AH and ESP
- Transport and Tunnel Modes
- IPsec Used Behind NAT
- Conclusion and References

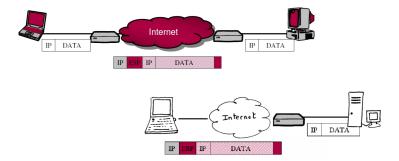

Transport/Tunnel vs AH/ESP

Transport mode:

• Data in the IP packet is encrypted and/or authenticated.

Tunnel mode:

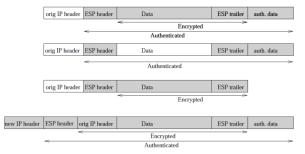
• The entire packet is encapsulated in a new packet.



■ In transport mode, security is done end-to-end.

Tunnel Mode

In tunnel mode, it can be done by intermediate routers.


Test: What is the Applied Mode?

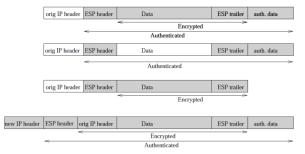
Authenticated (except the non-constant fields in the original IP header)

new IP header	AH header	orig IP header	Data

Authenticated (except the non-constant fields in the new IP header)

IPSEC USED BEHIND NAT

- VPN Primer and IPsec Primer
- Security Policy Database and Security Associations
- AH and ESP
- Transport and Tunnel Modes
- IPsec Used Behind NAT
- Conclusion and References


IPsec and NAT

Authenticated (except the non-constant fields in the original IP header)

new IP header	AH header	orig IP header	Data	

Authenticated (except the non-constant fields in the new IP header)

- The TCP and UDP checksum calculation includes a pseudo-header made of src and dst IP addresses and ports.
- When doing NAT, the checksum has to be readjusted every time the source IP address changes.
- This does not work if the payload is encrypted or authenticated.
- NAT-T (NAT traversal): encapsulate IPsec in UDP.

CONCLUSION AND REFERENCES

- VPN Primer and IPsec Primer
- Security Policy Database and Security Associations
- AH and ESP
- Transport and Tunnel Modes
- IPsec Used Behind NAT
- Conclusion and References

- IPsec is a standard that is safe, flexible, and open.
- Being a network-layer protocol, IPsec reduces the flexibility of the TCP/IP architecture (e.g. NAT).
- The IPsec-related RFCs are very complex, and so make the IPsec implementations usually non-interoperable.

- IPsec, The New Security Standard for the Internet, Intranets, and Virtual Private Networks (2nde edition), Naganand Doraswamy and Dan Harkins, 2003, Prentice Hall.
- http://unixwiz.net/techtips/iguide-ipsec.html