WiFi Networks

Chapter 8

Network & Security Gildas Avoine

SUMMARY OF CHAPTER 8

- Wifi-based WLAN
- Authentication in WiFi Networks
- WEP Description
- Attacks on WEP
- WPA Motivations
- Architecture and Protocols
- Conclusion and Further Reading

WIFI-BASED WLAN

Wifi-based WLAN

- Authentication in WiFi Networks
- WEP Description
- Attacks on WEP
- WPA Motivations
- Architecture and Protocols
- Conclusion and Further Reading

Radio communications can be easily eavesdropped.

- Anyone with a radio interface can **eavesdrop** or **inject** traffic.
- **Typical use inside: around 30 meters.**

Source: Wikipedia

Eavesdropping Range

• Typical outdoor range with suited antenna: around 5 km.

Long Distance Records

- Line of sight required.
- 310 km by the Swedish Space Agency (ground balloon).
- 382 km by EsLaRed of Venezuela (2007).

http://wndw.net/

http://wndw.net/

- Discovering WiFi networks, no unauthorized access.
- Requirement: Laptop, 802.11 card, Software, GPS, Car.
- Listen and build maps of WiFi networks found while driving.
- Examples: www.wigle.net and www.wardriving.com.

Map of WiFi APs

Source: www.wigle.net

- Protecting a wireless network consists in ensuring:
 - Authentication.
 - Confidentiality.
 - \circ Integrity.

AUTHENTICATION IN WIFI NETWORKS

Wifi-based WLAN

Authentication in WiFi Networks

- WEP Description
- Attacks on WEP
- WPA Motivations
- Architecture and Protocols
- Conclusion and Further Reading

Sol 1: Open Systems

- No network authentication.
- Usually, providers impose authentication by default.
- Public free hot spots without network authentication.
- Non-free hot spots in hotels, train stations, etc.
- High-level authentication (eg. RADIUS Server).
- Communities sharing their access: FON (BT, Orange,...), etc.

Sol 2: Hidden SSID

- Access points broadcast their SSID.
 - Allow clients to dynamically discover the AP.
- Can be used to authenticate a client.
 - Client must know the SSID.
 - Not secure because SSID can be eavesdropped.

RÉSEAU SANS FIL

Paramètres de base

Cette page vous permet de modifier les paramètres de base de votre borne Wifi.

Vous pouvez activer ou désactiver le service Wifi, masquer l'accès au réseau, définir le nom de votre point d'accès (le SSID) et restreindre le canal conformément aux restrictions du pays.

	Activer le Wifi		
	Masquer le point	d'accès	
BSSID:	00:16:38:58:9F:8D	-389182	
Pays:	FRANCE		~

Avoine Chapter 8: WiFi Networks

Sniffing with Kismet (Linux)

		roote	∋lucky: ~		
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>T</u> erminal Ta <u>b</u> s	<u>H</u> elp				
-Network List-(SSID)					Info
Name	TWCh	Packts Fla	ags IP Range	Size	Ntwrks
+ <no ssid=""></no>	G N	2	0.0.0.0	θB	17
<no ssid=""></no>	A O 011	253	0.0.0.0	θB	Pckets
<no ssid=""></no>	A 0 011	228	0.0.0.0	θB	15711
<no ssid=""></no>	A 0 011		0.0.0.0	θB	Cryptd
<no ssid=""></no>	A 0 001	10	0.0.0.0	θB	330
<no ssid=""></no>	A 0 001	12	0.0.0.0	θB	Weak
. Livebox-b3e7	A Y 010	2633	0.0.0.0	88k	1
. NEUF_AEF0	A 0 011	683	0.0.0.0	θB	Noise
. NEUF_Pitch	A 0 011	2250	0.0.0.0	2k	2
. Neuf WiFi	A N 011	684	0.0.0.0	ΘΒ	Discrd
. Neuf WiFi FON	A N 011	2473	0.0.0.0	θB	2
. <tecom-ah4222-589f82></tecom-ah4222-589f82>	A Y 006	2836	0.0.0.0		Pkts/s
WANAD00-18F8	A 0 001		0.0.0.0	θB	1
. Wanadoo_aed1	A Y 010	1845	0.0.0.0	20k	toto
. freephonie	A 0 001	37	0.0.0.0	θB	Ch: 3
neptune	A 0 011	489	0.0.0.0	θB	
vrignaud	A Y 001	122	0.0.0.0	336B	Elapsd
Status					
Cannot scroll clients in	autorit sort	mode. So	ort by a differe	ent method.	
Saving data files.					
Associated probe network	00:18:DE:4A	:3E:AE" W:	LUN	1:00:88 Via data.	(40.0)
ALERI: Suspicious client	00:14:A4:85:	en:an - bi	robing networks	but never participa	cing.
Battery: AC 105%					·

Sniffing with Network Stumbler (Windows)

8 Network Stumbler - [20100418162147]											
D File Edit View Device Window Help											9 ×
🕑 🎢 Channels	MAC	SSID	Name	Chan	Speed	Vendor	Type	Enc	SNR	Signal+	^
🕀 📥 SSID:	4EC874C0FBF1			7	48 Mbps	(User-d	AP	WEP	14	-83	
	8214E96D662C			4	48 Mbps	User-d	AP	WEP		-74	
	7A289EB9A766	Free'v/ifi		11	48 Mbps	User-d	AP			-86	
	7A289EB9A764	freebox_DBK		11	48 Mbps	User-d	AP	WEP		-90	
	7A289EB9A767	freephonie		11	48 Mbps	User-d	AP	WEP	10	-87	
	00251544DF1D	Neuf WiFi		11	54 Mbps	(Fake)	AP			-86	
	00251544DF1C	NEUF_DF18		11	54 Mbps	(Fake)	AP	WEP	14	-85	
	00251544DF1E	SFR WIFi Public		11	54 Mbps	(Fake)	AP		11	-85	
	726C4644779D			11	48 Mbps	(User-d	AP	WEP		-91	
	4EC874C0FBF3	freephonie		7	48 Mbps	(User-d	AP	WEP	14	-83	
	C E2DF9F1EE682	Free/w/ifi		13	54 Mbps	(User-d	AP		12	-86	
	4EC874C0FBF2	Free/w/ifi		7,5	48 Mbps	(User-d	AP		15	-82	
	E2DF9F1EE681			13	54 Mbps	(User-d	AP	WEP	13	-81	
	001A2812909D	NUMERICABLE-4C46		6	54 Mbps	(Fake)	AP	WEP	9	-82	
	E2DF9F1EE680	Domi		13	54 Mbps	(User-d	AP	WEP	13	-81	
				2	48 Mbps	(User-d	AP	WEP		-92	
	001F33CDF689	NUMERICABLE-E860		6	54 Mbps	(Fake)	AP	WEP	16	-83	
	④ 0E782CA1455F	freephonie		11	48 Mbps	(User-d	AP	WEP	11	-88	
	001A28476164	NUMERICABLE-2F08		6	54 Mbps	(Fake)	AP	WEP	17	-81	
	OE 782CA1455E	FreeWilti		11	48 Mbps	(User-d	AP		11	-86	
	④ 0E782CA1455C	Freebox_Darkknight79		11	48 Mbps	(User-d	AP	WEP	10	-86	
	0016416048BA	Alice-7059		11	54 Mbps	(Fake)	AP	WEP	21	-77	
	OA8D864DDB0A	Free/Wifi		11	48 Mbps	(User-d	AP			-90	
	@ 0A8D864DD808	freeboxY0Y0		11	48 Mbps	(User-d	AP	WEP		-87	~
	<										>
Ready			30 APs active			G	PS: Disa	bled			

Sniffing with Inssider (Windows)

Fil	e View	Help					🕞 Start G	PS Intel	(R) Wireless WiFi Li	nk 5300 🔹 🗉	Stop
7	MAC Addr	ess	SSID	RSSI	Channel	Vendor	Privacy	Max Rate	Network Type	First Seen	Last
V	00:1A:2	8:58:28:93	NUMERIC	-85	11	Ayecom Tec	WEP	54	Infrastructure	10:38:59 PM	10:45
	00:1C:F		gasten			D-Link Corpo	WEP		Infrastructure	10:38:59 PM	10:46
	00:1E:80	:C0:62:49	NUMERIC			ASUSTek C	WEP		Infrastructure	10:38:59 PM	10:46
	00:1F:C		NUMERIC			ASUSTek C	WEP		Infrastructure	10:38:59 PM	10:46
	00:22:7	5:CC:00:4F	JB		6	Belkin Intern	RSNA-CCMP	54	Infrastructure	10:38:59 PM	10:46
V			anja_wfi			Alpha Netwo	WEP		Infrastructure	10:38:59 PM	10:46
	00:1D:6		saba			Alpha Netwo			Infrastructure	10:38:59 PM	10:46
	00:19:7		alhambra			Z-Com, Inc.	WPA-TKIP		Infrastructure	10:38:59 PM	10:46
	00:19:7	0:47:9A:FE	John			Z-Com, Inc.	WPA-TKIP	54	Infrastructure	10:38:59 PM	10:46
			THEATER			Ayecom Tec	WEP		Infrastructure	10:39:15 PM	10:46
	00:21:8	S:EC:BB:C4	reeves			USI	WPA-TKIP	54	Infrastructure	10:39:33 PM	10:46
7	00:19:7		Pelicanboys			Z-Com, Inc.	WEP		Infrastructure	10:40:20 PM	10:46
	00:0C:4	2:0C:0F:51	OzoneBE		11	Routerboard	None	54	Infrastructure	10:40:49 PM	10:45
			NUMERIC			Ayecom Tec	WEP		Infrastructure	10:41:49 PM	10:43
٠.											÷
Nev	rs Time	Graph 2.4 GI	Iz Channels	5 GHz Channels	Filters G	GPS					
-20 -30 -30 -40 -40 -40 -40 -40 -40 -40 -40 -40 -4							-20 -NUMERIC, -30 -NUMERIC, -40 -NUMERIC, -50 -JB -60 -anja_wifi -60 -saba alhambra -80 -John -THEATERI -90 -THEATERI	ABLE-CD08 ABLE-C9A2 ABLE-8912 HOTEL 5			
	1	0:42	10:43	10:44		10:45	10:46				

Sol 3: MAC Address Filtering

- The access point has a list of authorized MAC addresses.
 - The router checks the MAC address of the station trying to connect to the network.
 - The attacker can read the MAC address of a legitimate wireless station and replace his own MAC address with the stolen one.

LINKSYS						
A Division of Cisco Systems, Inc.					Cir.	osane Versice : 0.04
				Wireles		WAP54G
Wireless	Setup	Wreless	Administration	Status		
	Danic Wireless S	attrigs V	Vieless Security	Wedens WAC Filter	Advanced Wheles	as Settings
Witches MAC Filter Access Restriction	Enable v O Provent O Permit 1 MAC Address	PCs listed below to for listed below to nex 1+25 *	ron accessing the wireless access the wireless netwo	s network onk	Help.,	
	(Enter the MA MAC 01 00% MAC 02 MAC 03 MAC 04 MAC 04	CAddresses in this	MAC 14 MAC 15 MAC 16 MAC 17 MAC 18			

Sniffing MAC Addresses

		root	⊛lucky: ~		
<u>F</u> ile <u>E</u> dit <u>∨</u> iew <u>T</u> erminal Ta <u>b</u> s	<u>H</u> elp				
-Network List—(SSID)					Info^
Name	TWCh	Packts Fl	ags IP Range	Size	Ntwrks
+ <no ssid=""></no>	G N	2	0.0.0.0	θB	17
<no ssid=""></no>	A 0 011	253	0.0.0.0	θB	Pckets
<no ssid=""></no>	A O 011	228	0.0.0.0	θB	15711
<no ssid=""></no>	A 0 011		0.0.0.0	θB	Cryptd
<no ssid=""></no>	A 0 001	10	0.0.0.0	θB	330
<no ssid=""></no>	A 0 001		0.0.0.0	θB	Weak
. Livebox-b3e7	A Y 010	2633	0.0.0.0	88k	1
. NEUF_AEF0	A 0 011	683	0.0.0.0	θB	Noise
. NEUF_Pitch	A 0 011	2250	0.0.0.0	2k	2
. Neuf WiFi	A N 011	684	0.0.0.0	0B	Discrd
. Neuf WiFi FON	A N 011	2473	0.0.0.0	θB	2
. <tecom-ah4222-589f82></tecom-ah4222-589f82>	A Y 006	2836	0.0.0.0	47k	Pkts/s
WANADOO-18F8	A 0 001	1	0.0.0.0	0B	1
. Wanadoo_aed1	A Y 010	1845	0.0.0.0	20k	toto
. freephonie	A 0 001	37	0.0.0.0	0B	Ch: 3
neptune	A 0 011	489	0.0.0.0	θB	
vrignaud	A Y 001	122	0.0.0.0	336B	Elapsd
					00:16:02
Status					
Cannot scroll clients in a	autorit sort	mode. S	ort by a differe	nt method.	
Saving data files.				on part of a data	
ASSOCIATED Probe network	00:16:DE:4A	DIDE W	111 30:A3:90:00	1:00:Do Via dala.	
Rattory AC 105%	00:14:A4:85:0	50:30 - p	robing networks	but never particip	acing.
- Dattery: AC 105%					

Modifying the MAC Address

ifconfig INTERFACE down ifconfig INTERFACE hw ether NEW_MAC_ADR ifconfig INTERFACE up

INFORMATIONS MODEM

Informations DHCP

Serveur	Adresse MAC	Adresse IP	Expiré dans
lucky	00:1C:BF:51:53:6F	192.168.1.3	6 jours, 19 heurres, 44 minutes, 27 secondes
lucky	00:1C:BF:51:53:6E	192.168.1.5	6 jours, 23 heurres, 53 minutes, 20 secondes

Sol 4: Crypto-based Authentication

WEP.

• Broken, should never be used.

WPA.

• Weak (urgent patch to WEP), should not be used.

WPA2.

- Secure (so far).
- A dictionary attack can be performed.

WEP DESCRIPTION

Wifi-based WLAN

- Authentication in WiFi Networks
- WEP Description
- Attacks on WEP
- WPA Motivations
- Architecture and Protocols
- Conclusion and Further Reading

- WEP = Wired Equivalent Privacy.
- Part of 802.11 Standard (1999).
- Goal of WEP is to make wireless LAN as secure as a wired LAN.

- No key management.
- No protection against replay attacks.
- **Confidentiality** (RC4 stream cipher encryption).
- Integrity (CRC-32 integrity mechanism).
- Authentication ("shared key" user authentication).

Confidentiality: Encryption using Stream Cipher

Stream Cipher RC4

- Designed by Ron Rivest (MIT) in 1987 for RSA Labs.
- Kept as a secret trade until 1994.
- Publicly disclosed in Sept. 1994 on Cypherpunks' mailing list.
- Bytes-oriented: Generate keystream byte at a step.
- Secret key of length from 1 to 256 bytes, usually 40 or 128 bits.
- Efficient, simple, elegant.
- Widely used:
 - Commercial softwares as MS Office, Oracle Secure SQL.
 - Network protocols as SSL, IPSec, WEP.
 - Copy protection: inside MS XBOX.

KSA (Key-Scheduling Algorithm).

- Initialization.
- Scrambling (N = 256 rounds).

PRGA (Pseudo-Random Generation Algorithm).

RC4 Steps

Initialization

For i = 0 To N - 1Do $S_i = i$

Scrambling

Generation

 $\begin{array}{lll} j = 0 & \mbox{Init:} i = j = 0 \\ \mbox{For} i = 0 \mbox{To} (N-1) & i = (i+1) \mbox{mod} N \\ \mbox{Do} j = (j+S_i+K_i) \mbox{mod} N & j = (j+S_i) \mbox{mod} N \\ \mbox{Swap}(S_i,S_j) & \mbox{Swap}(S_i,S_j) \\ \mbox{(K_i means } K_{(i \mbox{mod} \ L)} \mbox{ where } L = 16) & \mbox{Output } S_{(S_i+S_j)} \end{array}$

 $\mathsf{RC4}\;\mathsf{Key} = \textit{K}_0\;||\;\textit{K}_1\;||\;\textit{K}_2\;||\;\textit{K}_3\;||\;\textit{K}_4\;||\;\textit{K}_5\;||\;...\;||\;\textit{K}_{\textit{N}-1}\;||$

RC4 Key Example = 4 || 8 || 242 || 254 || ... ||

State Table <i>S</i> i		1	2	3	4	5	6	 N - 1
Initialization	0	1	2	3	4	5	6	 N-1
$i = 0, j = 0 + S_0 + K_0 = 4$	4	1	2	3	0	5	6	 N - 1
$i = 1, j = 4 + S_1 + K_1 = 13$	4	13	2	3	0	5	6	 N - 1

Swap(S_1 , S_{13}) Output S_{14}

RC4 for WEP Encryption

- WEP uses 24-bit (3 bytes) IV.
 - Each packet gets a new IV.
 - RC4 packet key: IV pre-pended to long-term key K.
- If *K* and IV are same, then same keystream is used.
- Problem: IVs frequently repeated.

- The IV is often a counter that starts at zero.
 - Hence, rebooting causes IV reuse.
 - Also, there are only 16 million possible IVs, so after intercepting enough packets, they are almost sure to be repeated.
- There is a 50% chance of key-reuse after 2¹² packets.
 - Birthday paradox.

Danger if IV Reused

If IVs repeat, confidentiality is at risk.

- If two ciphertexts (C, C') use the same Ⅳ, then the xor of plaintexts leaks (P ⊕ P' = C ⊕ C').
- If P is known, then P' is revelaed.

Getting Plaintext

- Integrity is ensured using a CRC.
- CRC does not provide a cryptographic integrity check.
 - CRC designed to detect random errors.
 - Not designed to detect intelligent changes.

CRC Property

CRC is a linear function wrt to XOR.

 $CRC(X \oplus Y) = CRC(X) \oplus CRC(Y)$

• Attacker observes $(M|CRC(M)) \oplus k$ where k is the keystream.

- For any ΔM , the attacker can compute $CRC(\Delta M)$.
- Hence, the attacker can compute:

 $([M|CRC(M)] \oplus K) \oplus [\Delta M|CRC(\Delta M)]$

- $= ([M \oplus \Delta M)|(CRC(M) \oplus CRC(\Delta M)]) \oplus K$
- $= [(M \oplus \Delta M) | CRC(M \oplus \Delta M)] \oplus K$

If the attacker knows destination IP address.

- He can change IP address in the ciphertext.
- And modify CRC so it is correct.
- Then access point will decrypt and forward the packet to the attacker's selected IP address.
- Requires no knowledge of the key K.

ATTACKS ON WEP

Wifi-based WLAN

- Authentication in WiFi Networks
- WEP Description
- Attacks on WEP
- WPA Motivations
- Architecture and Protocols
- Conclusion and Further Reading

History Fact Sheet

- 1995 Some security issues in RC4 (Weak keys). Roos, Wagner.
- 2001 The insecurity of 802.11. Borisov, Goldberg, Wagner.
- 2001 Weaknesses in the key scheduling algorithm of RC4: Fluhrer, Mantin, Shamir.
- 2002 Using the Fluhrer, Mantin, and Shamir Attack to Break WEP. Stubblefield, Ioannidis, Rubin.
- 2004 Korek, improves on the above technique and reduces the complexity of WEP cracking. He proposed 17 attacks.
- 2005 Klein introduces more correlations between the RC4 key stream and the key.
- 2007 Tews, Weinmann, Pyshkin extend Korek's technique to further simplify WEP Cracking.
- 2013 Sepehrdad, Vaudenay, Vuagnoux. Smashing WEP in a Passive Attack.
- Some IVs are weak, ie, they allow to guess some internal states, leading to the key.
- IV and first byte of plaintext and ciphertext must be known.
 - IV is sent in the clear.
 - Ciphertext is eavesdropped.
 - First bytes of ARP or TCP are fixed or can be easily guessed.

- The 3-byte IV is sent in the clear (not secret).
- New IV sent with every packet.
- Long-term key K never changed.
- The key to encrypt a packet is IV||K.

Attack Assumptions

- Attacker knows $IV = K_0 ||K_1||K_2$.
- Attacker knows a ciphertext.
- Attacker knows the first bytes of the corresponding plaintext.
- The WEP long term key is denoted $K_3||K_4||K_5||...$
- The RC4 packet key is $K_0 ||K_1||K_2||K_3||K_4||K_5||....$

- The attacker observes the channel until he get a 3-byte IV of the form: IV = (K₀, K₁, K₂) = (3, 255, X).
- Where X can be any arbitrary value.
- RC4 key for this packet is $3||255||X||K_3||K_4||K_5||...$

RC4 Steps with a Weak IV

Generation

For i = 0 To N - 1Do $S_i = i$

Initialization

j = 0For i = 0 To (N - 1)Do $j = (j + S_i + K_i) \mod N$ Swap (S_i, S_j)

Scrambling

RC4 Key = $K_0 \mid \mid K_1 \mid \mid K_2 \mid \mid K_3 \mid \mid K_4 \mid \mid K_5 \mid \mid ... \mid \mid K_{N-1} \mid \mid$

RC4 Key Example = 3 || 255 || $X || K_3 || K_4 || ... ||$

State Table S i	0	1	2	3	4	 5 + X	 $6 + X + K_3$	
Initialization	0	1	2	3	4	 5 + X	 $6 + X + K_3$	
$i = 0, j = 0 + S_0 + K_0 = 0 + 0 + 3 = 3$	3	1	2	0	4	 5 + X	 $6 + X + K_3$	
$i = 1, j = 3 + S_1 + K_1 = 3 + 1 + 255 = 3$	3	0	2	1	4	 5 + X	 $6 + X + K_3$	
$i = 2, j = 3 + S_2 + K_2 = 3 + 2 + X = 5 + X$	3	0	5 + X	1	4	 2	 $6 + X + K_3$	
$i = 3, j = (5 + X) + 1 + K_3 = 6 + X + K_3$	3	0	5 + X	$6 + X + K_3$	4	 2	 1	

- Only 4 steps have been considered (there are actually 256 steps).
- Assume for now the initialization stops after i = 3.
- The outputted keystream is $S_{S_0+S_1} = S_3 = 6 + X + K_3$.
- So we have: KeyStreamByte = 6 + X + K₃ mod N.
- If KeyStreamByte is know, then $K_3 = (KeyStreamByte 6 X) \mod N$.

Scrambling has 256 Steps

- Scrambling does not stop at i=3.
 - If S_0 , S_1 , and S_3 are not swapped in the remaining steps, the attack works.
- For the remaining initialization steps...
 - i = 4, 5, 6, ... so index *i* will not affect values at indices 0,1 or 3.
- Assume index *j* is selected randomly:
 - At each step, probability is $\frac{253}{256}$ that $j \notin 0, 1, 3$.
 - There are 252 steps after i = 3.
 - Probability that 0,1 and 3 not affected by j index after i = 3 step is (253/256)²⁵² ≈ 0.0513.

- Can the attacker recover the full key?
- If he sees enough IVs he gets K_3 .
- Suppose the attacker found K_3 .
- Then how to find K_4 ?
- Consider IVs of the form: IV = (4, 255, X).
- After initialization step i = 4, one could show that: keyStreamByte = $S4 = 10 + X + K_3 + K_4$.

- 4 million IVs to recover a 128-bit key.
- Number of IVs linear with the key-length (vs exponential).
- Key is revealed byte after byte (sequentially).

Further Attacks

Korek - 2004

- Proposed 17 attacks based on FMS.
- New classes of weak IVs.
- 1 million IVs.
- 2 bytes must be observable.

Tews, Weinmann, Pyshkin (PTW) - 2007

- Still new classes.
- 80'000 IVs.
- More bytes must be observable
- Variant by Vaudenay/Vuagnoux 2007 (32'000 IVs)
- Key bytes are no longer necessarily guessed sequentially.

 AirCrack-ng (http://www.aircrack-ng.org): implement Korek, PTW (needs ARP flooding).

					- C X										
Ble	Edit	⊻jew	Terminal Tabs Help												
				Aircrack-ng 0.9											
	[00:00:83] Tested 189 keys (got 720151 IVs)														
к 1	B 0 1 2 3 4 5 6 7 8 9 0	depth 0/ 1 1/ 2 1/ 1 1/ 2 K Decryp	byte(vote) 94(67) AE(15) AF(AB(274) 631 21) 061 221 061 210 061 221 049 01 21 061 857 240 021 67 0831 057 240 021 67 0831 057 240 021 681 751 751 231 051 201 751 201 751 201 751 201 751 201 751 201 751 201 201 201 201 201 751 201 201 201 201 751 201 201 201 201 201 201 201 201 201 20	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0) 1D(0) 3) DE(3) 5) 60(3) 0) 67(0) 5) 97(5) 1) 90(10) 5) 87(5) 5) 87(5) 5) 87(5) 3) 45(3) 9) 73(0) 3) 86(13)										

WPA MOTIVATIONS

Wifi-based WLAN

- Authentication in WiFi Networks
- WEP Description
- Attacks on WEP

WPA Motivations

- Architecture and Protocols
- Conclusion and Further Reading

- WPA: WiFi Protected Access.
- Goal is to replace WEP.
- WPA is a kind of urgent patch before the publication of 802.11i standard (WPA2).
- WiFi-compliant devices must implement WPA since 2003.
- WPA is designed such that old WiFi-compliant devices should be able to use WPA, possibly after a firmware update.

- A counter is used to prevent replay attacks.
- The initialization vector is a 48-bit IV.
- User authentication while only device authentication in WEP.
- Keys are dynamically refreshed using TKIP.
- AES is used in WPA2 instead of RC4 in WEP and WPA.

Personal vs Enterprise Key Management

- Two ways to use WPA: Personal and Enterprise.
- Personal WPA utilizes pre-shared keys (PSK): every device connected to the AP uses the same passphrase.
 - Each user must enter a 256-bit key: 64 hex digits, or passphrase (8 to 63 printable ASCII characters) that is used to generate a key. The passphrase is hashed jointly with the SSID.
 - Authentication based on EAP-MD5 between the client and the Access Point.
 - Suited to home or small office infrastructure.
- Enterprise WPA uses an IEEE 802.1X Authentication Server that distributes different keys to the users.
 - Authentication of the user.
 - Requires an authentication server (eg Radius).
 - Centralizes management of user credentials.

ARCHITECTURE AND PROTOCOLS

- Wifi-based WLAN
- Authentication in WiFi Networks
- WEP Description
- Attacks on WEP
- WPA Motivations
- Architecture and Protocols
- Conclusion and Further Reading

Extensible Authentication Protocol

- **Supplicant**: (party being authenticated).
- Authenticator (access point).
- Authentication Server.

IEEE 802.1X Model from the IEEE 802.1X Spec.

The pictures of this chapter are essentially from Wi-Fi security - WEP, WPA and WPA2 by Guillaume Lehembre, Hakin9, 2005.

- Agreement on the security policy.
- Authentication.
- Key derivation and distribution.
- Data confidentiality and integrity.

802.11i Operational Phases

Phase 1: Agreeing on the security policy

Phase 2: 802.1X Authentication

Phase 2: Extensible Authentication Protocol Message Types

EAP is a framework for transporting authentication protocols.
 Not really an authentication protocol itself.

- Four types of packet: request, response, success and failure.
- Request packets are issued by the authenticator and solicit a response from the supplicant.
- Any number of request-response exchanges may be used to complete the authentication.
- A success (resp. failure) packet is sent to the supplicant if the authentication succeeded (resp. failed).

- Legacy based methods
 EAP-MD5.
- Certificate based methods
 EAP-TLS, EAP-TTLS, PEAP
- Password based methods
 LEAP, SPEKE
- And many others...

- Authentication of the client only.
- MD5 message hashing algorithm.
- Very simple EAP method.
- It is not a secure EAP method.

- Mutual authentication and key exchange.
- Public key certificates (incl. the client).
- Strong authentication but requires PKI.

- Mutual authentication and key exchange.
- Public-key certificate (only the AP).
- A less secure authentication method can be used for the client (CHAP or PAP) through the secure channel.

Phase 2: Extensible Authentication Protocol PAP and CHAP Concepts

PAP.

• Upon reception of a request, the prover sends his password to the verifier.

CHAP.

• Upon reception of a challenge, the prover encrypts the challenge with his key and send the ciphertext to the verifier.

Phase 3: Key derivation and distribution

- **MK**: Master Key (= **PSK** when a preshared key is used).
- PMK: Pairwise-Master Key.
- PTK: Pairwise Transient Key (used for unicast).
- **GTK**: Group transcient key (used for multicast).

Phase 3: Pairwise Key Hierarchy

Phase 3: Pairwise Key Hierarchy

- KCK (Key Confirmation Key 128 bits): Key for authenticating messages (MIC) during the 4-Way Handshake and Group Key Handshake.
- KEK (Key Encryption Key 128 bits): Key for ensuring data confidentiality during the 4-Way Handshake and Group Key Handshake.
- TK (Temporary Key 128 bits): Key for data encryption (used by TKIP or CMMP).
- TMK (Temporary MIC Key 2x64 bits): Key for data authentication (used only by Michael with TKIP). A dedicated key is used for each side of the communication.

- PMK = PBKDF2(SSID, PSK).
- PBKDF2 is slow: 8192 runs of HMAC-SHA1.

Phase 3: 4-Way Handshake

Phase 3: Group Key Hierarchy

- GEK (Group Encryption Key): Key for data encryption (used by CCMP for authentication and encryption and by TKIP).
- GIK (Group Integrity Key): Key for data authentication (used only by Michael with TKIP).

Phase 3: Group Key Handshake

Two major suites of algorithms can be used with WPA: **TKIP**: RC4, MIC.

CCMP: AES in Counter Mode (WPA2 only).
TKIP Key-Mixing Scheme and Encryption

MIC Computation using the Michael Algorithm

- Michael algorithm instead of CRC32.
- Michael is keyed.
- Strongest MIC that was available with most older network cards.
- Due to weaknesses of Michael, the network is shut down during one minute if two frames fail to pass Michael check. Generation of new keys and reauthentication are required.

CCMP encryption

- WPA2 implements the mandatory elements of 802.11i.
- WPA2 certification is mandatory for all new WiFi-compliant devices since 2006.
- AES-oriented, instead of RC4.

Attack on PSK

- All the keys derive from PSK.
- PMK = PBKDF2(SSID, PSK) then 4-way hanshake to derive the other keys.
- The handshake can be eavesdropped and used to check a candidate passphrase.

Procedure.

- For every candidate passphrase, compute the associated PMK.
- Compute the PTK (4 HMAC-SHA1 computed on PMK and random values).
- Compute the MIC (1 HMAC-SHA1 or MD5 and compare with the eavedropped one.
- To mitigate the problem, the SSID should not belong to the 1000 SSIDs as there exist precalculated tables for them.

Attack on TKIP

Packet injection.

- E.Tews and M.Beck (2008).
- T.Ohigashi and M.Morii (2009).
- F.Halvorsen, O.Haugen, M.Eian, S. Mjølsnes (2009).
- 596 bytes within 18 min 25.

Decryption of packets from AP to Client.

• M.Beck (2010).

CONCLUSION AND FURTHER READING

- Wifi-based WLAN
- Authentication in WiFi Networks
- WEP Description
- Attacks on WEP
- WPA Motivations
- Architecture and Protocols
- Conclusion and Further Reading

WPA vs WPA 2

	WPA	WPA 2
Enterprise Mode	Authentication IEEE 802.1X/EAP Encryption TKIP/MIC	Authentication IEEE 802.1X/EAP Encryption AES-CCMP
Personal Mode	Authentication PSK Encryption TKIP/MIC	Authentication PSK Encryption AES-CCMP

Further Reading

- http://wiki-files.aircrack-ng.org/doc/tkip_master.pdf
- http://www.hsc.fr/ressources/articles/hakin9_wifi/