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ABSTRACT

Terrorist fraud is a relay attack against distance bounding
protocols where the prover conspires with an adversary to
misrepresent the distance between himself and the verifier.
In ideal situations, the adversary does not gain any knowl-
edge about the prover’s long-term secret. This makes design-
ing a distance bounding protocol resistant to a such fraud
tricky: the secrets of an honest prover must be protected,
while those of a dishonest one should be disclosed as an in-
centive not to cheat.

In this paper, we demonstrate that using a secret-sharing
scheme, possibly based on threshold cryptography, is well
suited for thwarting terrorist fraud. Although such an idea
has been around since the work of Bussard and Bagga, this
is the first time that secret-sharing and terrorist fraud have
been systematically studied altogether. We prove that se-
cret sharing can counter terrorist fraud, and we detail a
method that can be applied directly to most existing dis-
tance bounding protocols. We illustrate our method on the
protocol of Hancke and Kuhn, yielding two variants: the
threshold distance bounding (TDB) protocol and the thrifty
threshold distance bounding (TTDB) protocol. We define the
adversarial strategies that attempt to gain some knowledge
on the prover’s long-term secret, evaluate the amount of in-
formation disclosed, and determine the adversary’s success
probability.
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1. INTRODUCTION

Man-in-the-middle attacks (MITM) are effective against
a wide range of protocols.

Two variants are particularly relevant when considering
authentication protocols that use distance-bounding for
checking proximity: mafia fraud and terrorist fraud [1].

In mafia fraud, the adversary, Eve, attempts to imperson-
ate a legitimate prover, Alice, to a legitimate verifier, Bob,
using MITM. Terrorist fraud, also known as rental fraud
in [13], is a variant of mafia fraud where Alice helps Eve
to impersonate herself to Bob. Many scenarios may justify
this singular attack, e.g., Alice pays Eve for getting a per-
fect alibi during a crime. However, terrorist fraud can be
quite hazardous for Alice if Eve is able to (re)impersonate
her afterward: Eve could commit crimes pretending to be
Alice. Hence, Alice allows terrorist fraud only if Eve is able
to achieve a one-time impersonation. More precisely, we as-
sume that Alice does not get involved in terrorist fraud if
Eve may gain some advantage for future attacks.

Since the seminal works of Desmedt et al. on these frauds
[5, 13], most of the literature [3, 8, 14, 17, 21, 22, 27,
34, 36, 37] has been dedicated to mafia fraud. Concern-
ing terrorist fraud, the first proposal was made by Bus-
sard and Bagga [10, 11]. Their work was later extended
by Reid, Nieto, Tang, and Senadji [30]. Recently, new pro-
tocols emerged to defeat terrorist fraud [22, 37]. All these
protocols use secret-sharing, even if not explicitly stated by
the authors.

This paper attempts to shed more light on terrorist fraud.
Our contribution is an examination of secret sharing, and
more precisely, (n, k) threshold cryptography. Classical au-
thentication [19] and most distance bounding protocols [8,
17] fail to resist terrorist fraud because all the material
needed for the authentication can be supplied to the adver-
sary, as the long-term secret key cannot be retrieved from
this material. This problem can be discarded by using a
threshold scheme: the authentication material consists in
the n shares of an (n, k) threshold scheme. If Alice exposes
any combination of k shares to Eve, the long-term secret
leaks. Therefore, Eve can only obtained k£ — 1 shares from
Alice.

In the following sections, we provide a method based on
secret sharing that enforces security against terrorist fraud.
To illustrate our method, we suggest two protocols based
on Hancke and Kuhn’s protocol [17], which are: thresh-
old distance-bounding (TDB) and thrifty threshold distance-
bounding (TTDB). In TDB, Alice uses a different (n, k) thresh-
old scheme in each protocol round to answer Bob. TTDB is



more thrifty than TDB in the sense that the same system of
shares is used ¢ times (2 < g < k — 1) instead of only once.
The success probability of impersonation in mafia fraud and
in terrorist fraud are given for both protocols. Particular
attention is paid to key recovery attacks which fall into two
categories: birthday paradox and divide-and-conquer. The
first attack is prevented by choosing carefully the size of the
values exchanged at the initialization of the protocol. The
second attack depends on the capability of the adversary to
observe the protocol success. For this purpose, we define
three different classes of adversaries. Against the weakest
adversary, TDB with kK = 2 and TTDB with £ = 3, ¢ = 2 pro-
vide the best security level. For stronger adversaries, TDB
with k£ = 3 must be considered. For TTDB, the same system
of shares cannot be used more than ¢ = % times.

Our contribution is fourfold: (1) We introduce a method
based on (n, k) threshold cryptography that enforces the se-
curity of distance bounding protocols against terrorist fraud.
(2) We illustrate our method by applying it to Hancke-
Kuhn’s protocol, yielding two variants of this protocol. (3)
We refine the adversary model, introducing three classes of
adversaries: BD-ADV, RES-ADV, and RD-ADV. (4) We pro-
vide a comprehensive and accurate analysis of key recovery
strategies, including bounds on the disclosed information
and on the number of shares needed to maintain system
security.

The rest of the paper is organized as follows: Section 2
reviews distance bounding protocols, mafia and terrorist
frauds, and defines the adversary capabilities. The proto-
cols TDB and TTDB are described in Section 3. Section 4
and 5 analyze the security of our protocols against differ-
ent adversaries and strategies, including impersonation and
key recovery attacks. Section 4 computes the success prob-
abilities of mafia fraud and attacks based on the birthday
paradox. Section 5 introduces the post-ask strategy for key-
recovery based divide-and-conquer. Finally, the advantages
and weaknesses of previous works are discussed in Section 6.

2. THREAT MODEL

We now briefly review the definitions of distance-bounding
protocol, mafia fraud, and terrorist fraud. Detailed expla-
nations of these concepts can be found in [1]. Following this
review, we refine the adversary model to capture its capa-
bility to mount key recovery attacks.

2.1 Definitions

DEFINITION 1 (DISTANCE-BOUNDING PROTOCOL)
A distance bounding protocol authenticates a prover to a
verifier and bounds the distance between them.

DEFINITION 2 (NEIGHBORHOOD)

In a distance bounding protocol, the distance measurement
allows the verifier to define an area, called the neighborhood,
in which the protocol execution is considered genuine.

Three attacks exist against distance-bounding protocols:
distance fraud, mafia fraud, and terrorist fraud. Distance
fraud is not covered in this paper as it is not a MITM. Mafia
and terrorist frauds, however, are two types of MITM that
introduce an interaction between the legitimate prover, Al-
ice, and the adversary, Eve.

DEFINITION 3 (MAFIA FRAUD)

Mafia fraud is an attack where an adversary defeats a dis-
tance bounding protocol using a MITM between the verifier
and an honest prover located outside the neighborhood.

In mafia fraud, Alice and Bob are unaware of the presence
of Eve, while the latter collaborates with Alice in a terrorist
fraud.

DEFINITION 4 (TERRORIST FRAUD)

Terrorist fraud is an attack where an adversary defeats a dis-
tance bounding protocol using a MITM between the verifier
and a dishonest prover located outside the neighborhood. In
this situation, the dishonest prover helps the adversary maz-
imize her chances of a successful attack, without providing
any advantage for future attacks.

PROPOSITION 1 Given a distance-bounding protocol, let P
and Pr denote respectively the success probabilities of an
adversary in the mafia and terrorist frauds. Then, the fol-
lowing inequality holds:

Py < Pr. 1)

To justify the previous inequality, the relation between
Alice and the device executing the protocol needs to be ex-
plored: we can consider a black-box [7] model or a white-
boz [31] model. If Alice controls the device executing the
protocol at her side (white-box), she can provide Eve with
information that she cannot obtain herself in mafia fraud.
Otherwise (black-box), Alice can at least authorize Eve to
mount a sort of “mafia fraud” in which she is aware of the
attack.

DEFINITION 5 (SECURITY REGARDING TERRORIST FRAUD)
If a protocol satisfies Equation 1 with equality and Py < 1,
it is considered secure against terrorist fraud.

REMARK 1 We stress that the security of a protocol regard-
ing terrorist fraud is strongly related to its resilience to mafia
fraud. Indeed, taking into account Proposition 1 and the
above definition, security with respect to terrorist fraud can-
not be examined as an absolute value. The relevant value is
the advantage Eve gains in mounting a terrorist fraud in-
stead of a mafia fraud. Eve will not involve Alice if she
cannot provide useful information.

REMARK 2 Secret values are involved during the execution
of the protocol between Alice and Bob. An important require-
ment is that they cannot be recovered by Eve, using an attack
better than an erhaustive search.

2.2 Adversary

Eve is a man in the middle adversary with complete con-
trol of the channel between the legitimate parties. We con-
sider three classes of adversaries depending on their capa-
bilities to observe the protocol result:

DEFINITION 6 (BD-ADV)
The Blind-Adversary does not learn whether the protocol
succeeds.

DEFINITION 7 (RES-ADV)
The Result-Adversary can observe if the protocol succeeds.



For instance, in a building access control system, the ad-
versary knows that the protocol succeeded if the door opens.

DEFINITION 8 (RD-ADV)
The Round-Adversary has the capability to observe the result
of each round, e.g., using a side channel attack.

The BD-ADV case is in fact the hypothesis used in all the
existing works related to the terrorist fraud (Section 6).
However, distance bounding protocol designers should be
aware that the observability of a protocol result is critical
when evaluating key information leakage (Section 4 and 5).
Hence, the designers should take into account stronger ad-
versaries (RES-ADV and RD-ADV) during the protocol con-
ception and analysis.

3. THRESHOLD DISTANCE-BOUNDING

A brief introduction to secret-sharing and threshold cryp-
tography are reviewed in Appendix A and are a prerequisite
to understanding our protocols: TDB and TTDB.

In TDB, each round uses a different part of the long term
key s and a given threshold scheme, i.e., one share is used
per round. In TTDB, the same part of s and its associated
threshold scheme are used for several rounds. The notations
used in the paper are summarized in Table 1.

Our protocols assume the use of an (n, k) threshold scheme
A. From a secret s, n shares are computed such that any
combination of k shares can be used to recover the secret.
Gathering strictly less than k shares reveals no information
about the secret.

Na nonce chosen by Alice
Npg nonce chosen by Bob
la size of N4 in bits
I size of Ng in bits
G a finite group
R n X m matrix over GG
Ci i-th challenge of Bob
T4 an element of R (i-th row and j-th column)
and a given share of A
m number of rounds in TDB and TTDB
q number of sub-rounds in TTDB and m|q
n total number of shares
k number of shares recovering the secret k > 1
& encryption algorithm
A (n, k) threshold scheme over G
A (n, k) threshold scheme over GY
f pseudo-random function
Pnm success probability of mafia fraud
Pr success probability of terrorist fraud
Pz success probability of birthday impersonation
Px success probability of impersonation knowing
X elements of each column of R
BD-ADV | blind adversary
RES-ADV | adversary observing protocol result
RD-ADV | adversary observing round results

Table 1: Notations and parameters for TDB.

3.1 The TDB scheme

TDB is similar to the protocol of Hancke and Khun [17].
It is based on a decision problem, i.e., Bob’s challenges are

used to select the answers of Alice amongst n possible shares.
In [17], n = 2 and the shares of Alice are created using a
pseudo-random function. In TDB, the computation of Alice’s
answers is done differently.

PREREQUISITE.
Alice and Bob share a secret s viewed as a vector
(s1,-..,8m) of m coordinates over a group G. They can both

compute an (n, k) threshold scheme A and a pseudo-random
function f. The protocol is composed of three phases (Fig-
ure 1): initialization, interactive, and result.

INITIALIZATION PHASE.

Alice and Bob exchange nonces N4 and Np of respec-
tive size £4 and ¢p generated using a random number gen-
erator. Then, Alice and Bob compute an n X m matrix
R. The details on the computation of this matrix are given
later. There are no time constraints required for this proto-
col phase.

INTERACTIVE PHASE.

Bob asks Alice at round 7 to send the element ., ; of R (c;-
th row and i-th column). Bob measures the round trip times
0t; of each exchange. The accuracy and implementation
details depend on the underlying technology and are out of
scope in this paper.

RESULT PHASE.

Bob declares that the protocol succeeds if the received
answers 7‘212 match the expected values 7., ,; and if all round
trip time 6t; < A where A is a given bound used to estimate
if Alice is within the neighborhood of Bob. For now, we
consider only noiseless communication. This result phase is
the one targeted by the adversaries RES-ADV and RD-ADV.

Alice Bob
seG™ A seG™, f,A
INITIALIZATION PHASE

Picks Na _Na
N Picks Np

Forj=1---m
Fori=1---n
Computes r; ;

Forj=1---m
Fori=1---n
Computes 7;,;

INTERACTIVE PHASE
Fori=1---m

Ci

G- Picks ¢; € [1,n]
Tesi
Sends 7¢; i _ Measures 0t;
REsuLT

If Vi re, i Z T
and Vi, 0t; < A

Then SUCCESS

Otherwise

FAILURE

Figure 1: TDB protocol.

MATRIX COMPUTATION.
This is the core of TDB. Let us assume that R is gen-



erated randomly. It can be concluded that I(s;R) = 0
where I denotes the mutual information, i.e., the amount
by which the uncertainty (entropy) of s is reduced by learn-
ing R: I(s;R) = H(s) — H(s|R) in which R and s are
assimilated to random variables on their respective domains
and H is the Shannon’s entropy. Alice can share R with
Eve without revealing s. In order to defeat terrorist fraud,
R must be computed such that Alice cannot reveal R to Eve
without also leaking s, i.e., I(s;R) > 0.

The computation of R must satisfy two important criteria.
First, the knowledge of any combination of k elements of a
given column reveals a coordinate of the key. Second, Alice
and Bob need to compute the same n X m matrix R over G.
The first criterion is used to thwart the terrorist fraud and
the latter is required for the RESULT phase. The matrix R
is defined by:

T, Tim

m,1 *°° Tnm

where each column (ry,;,72,,- - 7m,i)Tof ‘R is obtained us-
ing the (n, k) threshold scheme A applied on s;. This con-
struction is compliant with our first criterion. Indeed, we
have for each column ¢ € [1,m]:

I(si;) =0,
I(s5;9) = [log, |G,

with @ (71,5, ,7Tn,:) being the set of the combinations for
k elements belonging to the ¢-th column. The previous equa-
tions are a strict interpretation of our criterion and of thresh-
old cryptography. By using A for the computation of R,
Alice should not reveal to Eve more than k — 1 elements of
each column of R. In an (n, k) threshold scheme A, random
values are often needed and it can be problematic if Alice
and Bob are not synchronized, i.e., producing different ran-
dom numbers in different shares. For this reason, they use
a pseudo-random generator initialized with s, Na, and Np.
A concrete study case is given with Example 1.

The computational cost of R depends on n, k, and |G|.
For instance, schemes with n = k are easy to implement
(see Example 1). For n # k and G = F,, construction
using MDS codes can be obtained at the cost of multipli-
cation by a constant in Fyi. This can be implemented very
efficiently [28] using linear feedback shift registers (LFSRs).

Vo € ®p_1(ri,i, -+ ,Tny)
V(,O S @k(rlyi, o ,”I'n,i)

ExampLE 1 Consider the case of n = k = 3 and G = Fs.
Then, computing 3 X m binary matriz R requires gener-
ating a random wvalue of 2m bits. This value can be o0b-
tained using the pseudo-random function f by computing
f(s,Na,Ng). These 2m bits represent the rows of the ma-
triz (ri,1,- - ,71,m) and (r2,1, -+ ,T2,m). The last row is the
sum modulo two of all other rows plus the corresponding se-
cret bit of s. Matriz R becomes:

71,1 T1,m
R = 72,1 s T2,m
S1Dri,1Pdrea Sm DTrim @ rem

The computation of R for any (n,m) easily follows.

REMARK 3 The critical parameters for implementation on a
radio device are n and |G|. Bob needs to send [logyn] bits
per challenge. Alice replies with [log, |G|] bits. As the pro-
tocol does not target any given technology, we do not discuss
on these values. The reader may consult [15, 16, 23, 29] for
more details on this topic.

3.2 The thrifty TDB scheme

The TDB and TTDB differ on three points: (1) the ma-
trix computation, (2) the size of Alice’s answers, and (3)
additional conditions on the challenges sent by Bob.

We call this scheme thrifty because it reduces the num-
ber of systems of shares computed. First, TTDB works on
vectors of ¢ coordinates in G. An (n, k) threshold scheme
A’ compliant with this condition is used. The scheme A’
is applied % times with ¢ a divisor of m. A column of R
is used once in TDB, whereas in TTDB, it is used ¢ times.
Consequently, there are only % distinct columns in R. A
column (r1,4,72,4, - - 7rn,i)T of R is obtained using the (n, k)
threshold scheme A" applied on (sgi—q+1,** ,S8q:i). Bach dis-
tinct column is repeated ¢ times in the matrix. The overall
number of challenges/responses is kept constant m. The
resulting n x m matrix R over GY is defined by:

q times q times

—_————
rl,’m/q e rl,’m/q

Tn,1 " Tn,l Tn,m/q " Tn,m/q

The last difference between TDB and TTDB is how Bob
generates challenges. When working on a giving distinct
column of R, the challenges ¢; are not allowed to be re-
peated. We now define a round for TTDB as the series of ¢
challenge/response (sub-rounds) with the same column.

As the following results will show, TTDB is a generalization
of TDB for the terrorist fraud.

4. BLIND ADVERSARY

In Section 2, we saw that mafia fraud and terrorist fraud
cannot be dissociated. We now show the results of our pro-
tocols against mafia fraud.

4.1 The analysis of TDB

This section describes how n and k should be chosen. The
parameter n is critical regarding mafia fraud while k impacts
the probability of a successful terrorist fraud. We also pro-
vide recommendations on the size of the nonces exchanged
by Alice and Bob.

An important intermediate result in our analysis is the
probability of a successful impersonation attack considering
that Eve knows X > 0 elements of each column of R. This
probability, denoted Px, is equal to:

X n—X\"
Px=(Z=
X (n+n|G|>

With this result, we derive all the probabilities needed to
evaluate the security of TDB.

MAFIA FRAUD.
The probability Py of mafia fraud is:



()" (o))

m
Note that (‘—é‘) corresponds to an adversary who at-

tempts to answer on its own. Any value is possible and
is referred to in the literature as the no-ask strategy. The
right term is the probability of success of the pre-ask strat-
egy. Within this strategy, the normal initialization phase
is followed by Eve executing the interactive phase with Al-
ice using her own challenges. Eve obtains m elements of R
from Alice (one per column). Afterwards, Eve executes the
interactive phase with Bob. The success probability for the
pre-ask strategy is exactly Px—1.

Equation 2 does not take into account the capability of
Eve to observe different executions of the protocol. She can
exploit the birthday paradoz [38] and the generalized birth-
day paradoz'. When both nonces are repeated, so does the
matrix R. An X-collision is the observation by Eve of X
executions of the protocol between Alice and Bob with the
same values Ns and Ng. Eve needs to observe:

X-1
X

C(X) > (XD x (2““8) 7 (3)

to obtain an X-collision on both N4 and Np with a proba-
bility greater than % for a large value of 2°4**B_ This result
is a direct application of the work of Suzuki, Tonien, Kuro-
sawa, and Toyota in [35].

When the X-th collision occurs, the success probability
Pg for this birthday impersonation is: Pg = Px.

The previous computation of Pg assumes that Eve has ob-
tained X different shares for each round only from observing
the protocol execution. The birthday paradox needs to be
also applied on Bob’s challenges. Eve will need more than
an X-collision to obtain the success probability equal to Px.
Fortunately for Eve, she can circumvent this problem by us-
ing a pre-ask strategy. When a collision occurs, she executes
the interactive phase with Alice using challenges not previ-
ously recorded. Then, she executes the interactive phase
with Bob. To thwart such attacks, the nonce size must be
chosen such that observing C'(X) is not feasible.

At this point, readers may be wondering about the case
when X = k. Indeed, Eve can recover each coordinates s;
of the secret s. However, it requires C(k) executions of the
protocol (Equation 3). A more effective attack is possible as
shown in the next paragraph.

KEY RECOVERY.

With the lesson learned by birthday impersonation, Eve
can devise a key recovery attack more efficient than the one
suggested previously. Instead of observing and tampering
with messages between Alice and Bob during protocol exe-
cution, she directly executes the protocol with Alice. This
attack is possible since the authentication is unilateral. In
this way, Eve keeps the value of the nonce Np constant and

observes a k-collision with probability greater than % for:

C'(k) > (kK)* x (2“)% (4)

The term generalized birthday paradox is used abusively
to describe very different problems. We refer here to multi-
collisions as used in the cryptography-related literature [20]

executions of the protocol. If £4 is not chosen carefully, an
attack against the secret s can be more efficient than an
exhaustive search. To guarantee the security level of the
key s, we require:

c'(k)y > 2m,
. km_ klog, (k)*
4= ko1 k—1
km
oz T

since (k')% > 1. For k = 2, we need to have £4 = 2m.
Choosing k > 2 allows the designer to reduce the size of the
nonces generated and exchanged by Alice.

We claim that this attack is the only key-recovery attack
available to Eve when she is a BD-ADV. She is unable to
recover k elements of a column of R even if she observes or
tampers with the protocol. This claim is more explicit when
we deal with RES-ADV and RD-ADV in Section 5.

TERRORIST FRAUD.

How many elements of a column of R can be safely given
to Eve? In the context of BD-ADV, this value is equal to k—1.
The reasoning behind this choice is as follows: When Bob
sends a challenge ¢; for which Eve knows the answer 7, i,
there is no risk of information leakage on s. Otherwise, Eve
tries to guess the answer. If her guess is correct, she obtains
enough shares to recover a coordinate of the key. However,
she is unable to detect a correct guess since we are dealing
with a BD-ADV. Therefore, the success probability P3PV
of terrorist fraud is:

PP = Px_po1 = <k_1 n—k+1> (5)

n + n|G|

EXAMPLE 2 Let consider TDB implemented with an (2,2)
threshold scheme and G = T3 (similar to the protocol of
Hancke and Khun [17]). In this case, the success probabil-
ity against the mafia and terrorist frauds are respectively
Py o= (3)™ and PP = ()™, It is secure against
terrorist fraud: Pypm = PPV and Pym < 1. Indeed, TDB
implemented with (n,2) threshold scheme is secure against
terrorist fraud for any n > 2 if Eve is BD-ADV.

Working with n = k = 2 means that the birthday im-
personation and the key recovery attack employ directly the
birthday paradoz:

4
c@2) ~ 277"

£
c'@2) ~ 27,

When a collision is observed, Ps = 1. Alice needs to choose
a monce Na of length £a = 2m to guarantee the security
level of her key s.

4.2 The analysis of TTDB

The security analysis of TTDB is essentially the same as
the one for TDB. The main difference is the computation of
Px.

In order to compute the success probability of mafia and
terrorist frauds, we first analyze the success probability of
an impersonation given that Eve knows X shares in each
round, with X > 0.

Let consider a given round r (1 < w < %). The anal-
ysis becomes tricky because the sub-rounds of 7, are not



independent. Given a bit string B of length ¢, we define the
events Ap that Eve succeeds in round r,, and Bob asks her
known shares when the bits of B are equal to 1. By varying
B in F, we cover all the possible sequences of challenges. As
the Apgs are pairwise disjoint, we deduce the success proba-
bility of Eve impersonating Alice regarding Bob in the round
Tw:

Pr (succ ry) = Z Pr(Ag). (6)
BeF}
Now, we define the function fx s(i) : {0,...,q¢ — 1} —
[0,1], by:
j=i
X — Bj +1 if B; = 17
1 =0
—3 Jj=t
net <(n—i) - <X -3 Bj)) : ‘Gl‘q otherwise,
3=0

where Bj is the jth bit of B. fx,g(i) represents the success
probability of Eve in the (i + 1)th sub-round. Indeed, two
cases occur (a) Bob asks for a known share, this happens
x-S B+

j=0

with probability ————— and Eve wins with probabil-
ity 1. Or (b) he does not and Eve has to guess the answer,

so she succeeds with probability i Gl‘q . By definition of fx p:

i=qg—1

Pr(Ag) = H fx,B(9). (7

Hence, Equations 6, 7, yield to:
i=q—1
Pr (succ mw) = Z < H fx,B(i)> .
BeFy \ =0

Finally, by noticing that the rounds are independent, we
find the probability of a successful impersonation given that
Eve knows X shares in each round, Px, as:

(8)

o
|

—
foml

By

v
~
.

MAFIA FRAUD.
The success probability for mafia fraud is the maximum
between the no-ask and pre-ask strategy:

1 m
Pat = max ((@) ’ PX2Q> ’

We compute the success probability of a birthday imper-
sonation given that Eve has observed a z-collision as:

PB :PX:q:L‘-

Indeed, Eve learns ¢ elements of column of R at each round
and this for every collision she observed. C(X) remains the
same (Equation 3).

KEY RECOVERY.

Eve uses the same key recovery as in TDB. She executes
the protocol with Alice with a fixed Np. However, Eve
collects more information during each collision with TTDB

than with TDB. Indeed, a collision exposes g shares with
TTDB for only one with TDB. Thus, we need:

()

which implies from Equation 4:

£A2m~<1+ﬁ),
q

considering [%] < % + 1 and Equation 4.

TERRORIST FRAUD.
For each distinct column of R, Alice can provide k — 1
elements to Eve without revealing the key. We have:

P’;!_D:AD\’ = Pxep 1. (9)

EXAMPLE 3 Let consider TTDB implemented with an (3,3)
threshold scheme, ¢ = 2 and |G| = 4. The size of Alice’s
nonce is a = 2m. Using the previous equations, we have
the following computations for Px—s:

2 1
Px—o = <§.§+_._._+_._.
%

- (3
- \8
Thus, the success probability against mafia and terrorist

\/g >77L
rauds are respectively Py = | ——= and
f P Y Pm <2 7
P%D*ADV — ( \/g

—) . Hence, this scheme is secure against
2v2

terrorist fraud: Pyp = PP ™ and Pm < 1. This property
is verified for TTDB if ¢ = k — 1.

5.  STRONGER ADVERSARIES

Apart from the birthday results, the analysis found in
Section 4 is the one used by the existing literature, and is
limited to BD-ADV. Our analysis goes a step further with
RES-ADV and RD-ADV and we see drastically different results.
This section is dedicated to key recovery attacks pertaining
the terrorist fraud.

5.1 The analysis of TDB

In Section 4, we concluded that TDB with (n,2) threshold
cryptography is enough to defeat terrorist fraud. We now
show under the same assumptions that Eve can recover the
secret s using a post-ask strategy in RES-ADV and RD-ADV.

POST-ASK STRATEGY.

This strategy was originally designed to carry out mafia
fraud against Brands and Chaum’s protocol [8]. This pro-
tocol differs from Hancke and Khun [17] by requiring that
Alice compute a signature over all received challenges ¢; and
all answers r, ; at the end of the protocol. She sends this
signature to Bob for verification in addition to the initializa-
tion and interactive phases. The idea of the post-ask strat-
egy is to force Alice to generate the final signature. When
Eve executes the interactive phase with Bob, she must also
execute the interactive phase with Alice and forward the le-
gitimate challenges. At the end, Alice transmits the correct

SH



signature and Eve relays it to Bob. Eve has “only” to suc-
ceed in the interactive phase with Bob. She does not solve
a cryptographic problem.

The use of this strategy may look dubious on TDB for Eve
at a first sight: TDB and TTDB are not using any final signa-
ture. However, a slight modification of this attack results in
learning two elements of each column of R for each protocol
round.

First consider the case of RD-ADV and the attack described
in Figure 2. Eve executes the interactive phase with Bob.
The challenge ¢; is answered by 7.,,;. She observes the result
of each round. If a round succeeds, then 7., ; = r¢,;,;. She is
now half way to recovering the secret key. Now, Eve sends
her own challenges ¢; to Alice such that they all differ from
the legitimate ones, i.e., Vi ,¢; # ¢. By doing so, Eve is
guaranteed to obtain legitimate elements from R which are
not expected by Bob. If a given round ¢ succeeds, Eve has
two distinct elements, 74, ; and rc,:, of the same column
of R. With two shares, she can recover the corresponding
coordinate s;. On average % post-ask attacks are needed
to recover the whole secret s.

Now consider the case of RES-ADV. Eve allows the inter-
active phase to be carried out correctly except for a single
round i. In this round, Eve modifies the challenge c¢; sent by
Bob. Alice receives ¢; # ¢;. Then, Eve records the answer
of Alice 7¢,,; and sends a random answer 7., ; to Bob. If
the protocol succeeds, Eve knows that ¢, ; = 7¢;,;. Other-
wise, she knows two elements of the same column r; ; and
Te;,i- She can recover the corresponding coordinate s; of the
secret. Eve needs on average @ executions of this attack
to recover s;. Repeating this process m times, once per co-
ordinate, she recovers s using a typical divide-and-conquer
strategy.

The main difference between RD-ADV and RES-ADV is that
RD-ADV can work on all rounds in parallel. Eve is limited to
a single round per attack with RES-ADV.

EXAMPLE 4 Recall Example 2, i.e., n =k =2 and G = F».
The attack described in Figure 2 can be obuviously applied.
Howewver, there is a much simpler strategy for Eve to recover
two shares at each round. It exploits the fact that |G| = 2.
The post-ask attack given in Figure 2 can be replaced by a
fault attack: Eve changes one or all the challenges of Bob.

e In RES-ADV, Eve changes only one challenge c;. She
knows that ro; = r1,; if the protocol succeeds. Other-
wise, she concludes that ro; # r1,; and she observes ei-
ther ro,; orri;. After m executions of the protocol with
one fault at a different round, she recovers the whole
secret s. This strategy was first unveiled by Kim et al.
in [22] against the protocol of Tu and Piramuthu [37].

e In RD-ADV, Eve can flip all the challenge bits and re-
cover the secret s with only one execution of the pro-
tocol.

For |G| > 2, this fault attack only reveals equality between
the two shares. If all shares are different, this fault attack
does not help Eve. This is most likely if n < |G| (this is yet
another application of the birthday paradox). The post-ask
strategy directly attempts to recover two shares and is not
affected by this problem.

We can conclude that TDB cannot be used with (n,2)
threshold scheme if Alice has to deal with RES-ADV or RD-

ADV. TDB is weak for k = 2 because Eve can recover two
shares at each round. The parameter k must be chosen as
k = a + 1 where « is the maximum number of shares that
can be recovered by Eve in a given round. For TDB, we
have shown with the previous attack that « = 2. So, &k > 3
is a safe choice for TDB. If we refer to the result given for
terrorist fraud in Section 4 (Equation 5), k > 3 implies that:

Py < PP,

So, it seems that our solution is not secure against terrorist
fraud. However, the analysis of the terrorist fraud has to be
re-computed taking into account the new capabilities of Eve
(RES-ADV and RD-ADV).

TERRORIST FRAUD.

For now, k > 3 is only considered. In BD-ADV, it was
assumed that Alice can provide k — 1 shares for each round
of the protocol without revealing the secret s. Let us assume
that Alice provided k—1 elements of each column of R. Each
time, Alice has not provided the legitimate answer rc,,; to
Eve, Eve sends 7, ;. If the round succeeds 7, ; = 7¢,,i, she
recover s;. Otherwise, she eliminates a possible value for s;.
On average, % attempts are needed on a round for which
Eve does not know the answer. Moreover, Eve with RD-ADV
capabilities can explore on average 3 rounds in parallel.

In the case of RES-ADV, Eve obtains less information. If

m

the terrorist fraud is successful, she obtains on average &

coordinates of the key. Otherwise, Eve has chosen i coor-
dinates for the secret s (on average 7). These coordinates
are incorrect since the protocol fails. The |G|™ " secrets
with these coordinates can be eliminated by Eve. Several
executions of terrorist fraud result in an exploration of the
key space faster than exhaustive search. The same reasoning
holds for mafia fraud.

Therefore, it is wiser for Alice in the terrorist fraud to
expose to Eve only k — 2 shares at each round. When Eve
succeeds in terrorist fraud, she obtains for some columns
of R k — 1 elements. This is not enough to recover the
corresponding coordinates of the key s;. The probability of
successful terrorist fraud becomes:

ADV ADy k—2 n—k+2\"
PRES ADV — PRD ADV —
T T ( n n|G] >

(10)

REMARK 4 In the context of RES-ADV and RD-ADV, TDB
used with (n,3) threshold schemes is secure against the ter-
rorist fraud since we have for k =3 and |G| > 2:

vn 2 37 P’;?_,ESfADV — P/;{_DfADV — PM.

5.2 The TTDB analysis

Fundamentally, the attacks against TTDB are identical to
the ones used against TDB in RES-ADV and RD-ADV. The
only modification is the overall number of shares recovered
by Eve. For TDB, the post-ask helps to recover at most
o = 2 shares and explains why (n,3) schemes are safe. For
TTDB, Eve can recover at most a = 2¢q shares with the same
method. Therefore, (n,2g+1) threshold schemes ensure that
TTDB never reveals enough information to the adversary.

Consequently, Alice can only reveal ¢ shares to Eve. The
probability of terrorist fraud is:

Yn >3 and ¢ > 1, PP = PR = Py



Alice Eve Bob
se G, f,A LA se G, f,A
Picks Na — Ma — Na
PR/ B— PRI B— Picks Np
Forj=1---m Forj=1---m
Fori=1---n Fori=1---n
Computes r;,; Computes r;,;
Fori=1---m
4 Picks ¢ € [1,7]
Picks 7, i * Measures dt;
If Vi re, i = o, s
and Vi, 0t; < A
Then SUCCESS
Otherwise
FAILURE
Fori=1---m
PR Picks & # ¢;
Send ¢, 5 TC%Z)

Figure 2: Post-ask attack for RD-ADYV against TDB.

6. RELATED WORKS

Although existing work is primarily based on (2,2) thresh-
old schemes, individual constructions use matrix computa-
tion based on encryption, or, introduce a challenge verifica-
tion step. We consider both approaches by studying, respec-
tively, the protocols of Reid et al. [30], and Kim et al. [22].

6.1 Matrix computation based on encryption

This class of protocols is derived from the first solution
to terrorist fraud by Bussard and Bagga [11]. This solution
based on asymmetric encryption was adapted by Reid et
al. [30] to symmetric encryption. The protocol is described
in Figure 3.

Let us summarize the main differences between the pro-
tocol of Reid et al. [30] and TDB with respect to our nota-
tions. The protocol of Reid et al. uses an 2 X m matrix
R over G = F5. Let denote r1 and 72 the rows of R. The
first row 71 is obtained using the pseudo random function
fin f(s,A,;B,Na,Np). The second row is obtained
by encrypting s with r1: r2 = &-,(s). For the choice of &,
Reid et al. gave, in the early version of their paper [30], the
following comment (with adapted notation for consistency):

£ is a semantically secure encryption function, i.e. an
adversary does not learn any (computational) information
about the plaintext. In practice, because the strings to be
encrypted are short and the key varies for each run of the
protocol, we can use a one-time pad, i.e ., (s) =sDri.

If £ is the one-time pad, then we are exactly in the setup
of Example 2. The protocol of Reid et al. is an instance of
TDB with a (2, 2) threshold scheme and G = F. Indeed, the
additive cipher is the basic tool used to design (n,n) thresh-
old scheme (see Appendix A). Section 5 has shown that
such a scheme is not secure against the post-ask strategy for
RES-ADV and RD-ADV.

If £ is a block cipher or an asymmetric encryption scheme,
the attack remains the same for RD-ADV. However, the case
of RES-ADV is more difficult. Eve recovers 3 bits of the key
r1 used to encrypt s and % + 1 of the ciphertext r2. How-
ever, this information alone cannot be used to recover the
secret s when &£ is a pseudo-random permutation. Other-
wise, the information recovered may depend on the cipher
characteristics. The additional cost of using a block cipher
or an asymmetric encryption scheme must also be taken into
account.

Alice Bob
A,seFy, [, € B,s € Fy', f,&
INITIALIZATION PHASE

Picks Ny ANa
ENs Picks Np
r1 = f(s,A,B,Na, Np) r1 = f(s,A,B,Na, Np)
ro =&r, (8) ro =Er (s)
INTERACTIVE PHASE
Fori=1---m
P S— Picks ¢; € Fa
Sends ;i —_ Measures 0t;
REsuLT
I Vi rei =7,
and Vi, 0t; < A
Then SUCCESS
Otherwise
FAILURE

Figure 3: Reid et al.’s protocol. The use of the
identifier A and B is made to solve a complexity
issue at Bob’s side [2]. They are omitted in TDB
and TTDB for the sake of simplicity.

6.2 Challenge verification and (2,2) threshold



Amongst all the solutions to terrorist fraud, the Swiss-
Knife RFID Distance Bounding Protocol [22] is particularly
interesting. It uses an (2,2) threshold scheme that is com-
bined with a challenge verification step. An extended anal-
ysis of this protocol is given below. The protocol is depicted
in Figure 4.

Alice Bob
AY,seFy, f AY,seFy, f

INITIALIZATION PHASE
Np

—5 Picks Np
. N
Picks Na L
r1=f(s,Na,Y)
r2=T1®s
INTERACTIVE PHASE
Fori=1---m
— Picks ¢; € Fa
Pagi N
Sends 7¢; _—_ Measures dt;

CHALLENGE VERIFICATION
h = f(és,A,Np,Na)
Sends é, h _er
REsuLT
If SEARCH = FAILURE
Then FAILURE
Otherwise
Computes 1 and 72
Computes €., €, and €
Ifect+e+e>T
Then FAILURE
Otherwise
SUCCESS

Figure 4: Kim et al.’s protocol.

PREREQUISITE.

Alice has an identifier A and a secret key s € Fy'. Bob
knows a database DB which consists of pair of the form
(key,identifier). The pair (s, A) is included in Bob’s
database. Alice and Bob also share a constant Y. They
can both compute a pseudo-random function f and a (2, 2)
threshold scheme.

INITIALIZATION PHASE.

Bob and Alice pick respectively the nonces Np and Na.
Both nonces are exchanged. Then, Alice computes the 2 X
m matrix R over Fo. The first row of the matrix is r; =
f(s,Y,Na). The second row r2 is given by ro = r1 @ s.

INTERACTIVE PHASE.

At each of the m rounds of this phase, Bob picks randomly
a challenge ¢; € Fa. Alice received the challenge ¢ and
replies with ¢, ;. Bob receives 7, ; and measures the timing
of the round dt;.

CHALLENGE VERIFICATION.
Alice computes a signature of the received challenge é;:

h=fer,

Then, Alice sends to Bob the vector é = (é1,é2,- -+, ém) and
h. A similar phase is also found in the protocol of Bussard
and Bagga [11].

7ém7A7NA7NB)«

REsULT.
Bob first needs to recover the identity of the prover. He

performs an exhaustive search on his database DB (SEARCH
function) to match the value h using ¢, Y, N4 and Np. If
this search is unsuccessful, the protocol fails. Otherwise,
Bob recovers the pair (s, A). He computes the matrix R as
done previously by Alice, along with the following quantities:

e ¢. the number of positions for which ¢; # é;,

o ¢, the number of positions for which ¢; = ¢é; but rc,,; #

Teiyiy

e ¢; the number of positions for which ¢; = ¢&;, r¢;,i =
f'ci,i but 5ti > A.

If e« + €, + €, > T the authentication fails. Otherwise, it
succeeds.

REMARK 5 Kim et al. propose a variant of this protocol in
which the number of rounds is smaller than the key size m.
At the beginning of each instance of the protocol, Bob picks a
random mask of m bits and Hamming weight w. This mask
is used to select w bits of the key s. The interactive phase
consists of w rounds. This does not affect our analysis.

POST-ASK STRATEGY.

Assume that T' = 0, i.e., no error is tolerated. This scheme
defeats the post-ask attack described in Section 5 for RES-
ADV but not for RD-ADV. For RES-ADV, the attack is detected
by the €. variable and the protocol can never succeed. Eve
can attempt to bypass this problem by forging a valid sig-
nature for the legitimate challenges c;. We assume that this
cryptographic task cannot be afforded by Eve.

If T > 1, Eve can manipulate T challenges. However,
the values sent by Eve are not taken into account when
determining if the protocol succeeds or not. When ¢; # ¢,
the corresponding answer is discarded.

TERRORIST FRAUD.

This protocol uses a (2,2) threshold scheme and, as
pointed out in section 4, does not leak any information to a
BD-ADV. We focus our discussion on RES-ADV and RD-ADV.

In order to mount a terrorist fraud, Eve first relays the
initialization phase. Then she asks Alice for a row of the
matrix R, without loss of generality we assume that it is the
first row. After the interaction phase with Bob, she trans-
mits to Alice the challenges she received. Alice computes
the signature, and sends it to Eve who ends the protocol
with Bob by transmitting him this signature.

A REs-ADV Eve, capable of detecting protocol success,
gains information about the secret. Indeed, if the proto-
col succeeds, she knows the answers given to Bob were all
correct. Thus, for the answers coming from the second row
of R, Eve learns the corresponding secret bits. We conclude
that Alice should never help Eve.

Finally, in the case of the RD-ADV, Eve knows whether
the round succeeds or not. Hence, when Bob asks her for a
second row element, she is able to determine the expected
answer, and so she retrieves the corresponding secret bits.
The conclusion is Alice must absolutely not provide any help
to Eve.

7. CONCLUSION



We demonstrated in this paper that using threshold cryp-
tography thwarts terrorist fraud. Previously proposed dis-
tance bounding protocols using a (2, 2) threshold scheme do
not resist to terrorist fraud with powerful adversaries. Our
results show that, at least, a (3,3) threshold scheme should
be used. We illustrated our results on the protocol of Hancke
and Kuhn, yielding two variants: the threshold distance
bounding (TDB) protocol and the thrifty threshold distance
bounding (TTDB) protocol. We refined the adversary model,
introducing three classes of adversaries: BD-ADV, RES-ADV,
and RD-ADV. We provided an accurate analysis of our pro-
tocols, including the adversary’s success probabilities. Fi-
nally, we applied our adversarial model to previous works,
and highlighted their weaknesses.
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APPENDIX
A. SECRET SHARING

A secret-sharing scheme A allows a user to share a se-
cret s amongst n participants according to an access control
list I'. T" determines the subset of participants that are al-
lowed to recover s. The parameter k of a secret-sharing
scheme is the size of the smallest subset of participants
that can recover the secret. The first solution for achiev-
ing secret-sharing was the threshold cryptography [6, 32].
In an (n, k) threshold scheme, any subset of k participants
can recover s. Threshold schemes were first implemented
by Shamir [32] using interpolation problem. It was subse-
quently re-interpreted by Sarwate and McEliece [25] in terms
of Reed-Solomon codes. Several important results for secret-
sharing coming from coding theory have followed [24]. To
conclude this overview of secret-sharing, the classical con-
struction of (n, n) threshold schemes is given. This textbook
example is particularly useful since the existing works used
(2,2) schemes and (3, 3) schemes.

EXAMPLE 5 Consider an additive group (G,+) and a secret
s € G. To construct an (n,n) threshold scheme, the owner
of s chooses randomly n — 1 shares s; € G, i € [1,n — 1].
The last share sn is defined by s, = s — Z;le si. Knowing
all shares, one can compute s =y ., s;. Knowing strictly

i=

less than n shares does not provide information about s.

The size of shares in a secret sharing scheme is also an
important problem. More details on this problem can be
found in [9, 12, 33].



