
M2AP: A Minimalist Mutual-Authentication
Protocol for Low-cost RFID Tags

Pedro Peris-Lopez, Julio Cesar Hernandez-Castro, Juan M. Estevez-Tapiador,
and Arturo Ribagorda

Computer Science Department, Carlos III University of Madrid,
{pperis,jcesar,jestevez,arturo}@inf.uc3m.es

Abstract. Low-cost Radio Frequency Identification (RFID) tags affixed
to consumer items as smart labels are emerging as one of the most per-
vasive computing technologies in history. This presents a number of ad-
vantages, but also opens a huge number of security problems that need
to be addressed before its successful deployment. Many proposals have
recently appeared, but all of them are based on RFID tags using classi-
cal cryptographic primitives such as Pseudorandom Number Generators
(PRNGs), hash functions, or block ciphers. We believe this assumption
to be fairly unrealistic, as classical cryptographic constructions lie well
beyond the computational reach of very low-cost RFID tags. A new ap-
proach is necessary to tackle the problem, so we propose a minimalist
lightweight mutual authentication protocol for low-cost RFID tags that
offers an adequate security level for certain applications, which could
be implemented even in the most limited low-cost tags as it only needs
around 300 gates.

Keywords: Ubiquitous Computing, RFID, Tag, Reader, Pseudonym,
Privacy, Mutual-Authentication.

1 Introduction

At the moment, the most extended identification systems are barcodes. Recently,
the mass deployment of Radio Frequency Identification (RFID) systems has
taken place [8]. Around 5 billion barcodes are read daily, so efficiency gains from
using RFID tags could substantially lower the cost of tagged items [9, 12]. The
penetration of RFID systems is nowadays mainly limited by privacy concerns
and by their cost, which must be between 0.05 and 0.1 ¤ to be considered
affordable.

The low cost demanded for RFID tags forces them to be very resource lim-
ited. Typically, they can only store hundreds of bits, have 5-10K logic gates,
and a maximum communication range of a few meters. Within this gate count-
ing, only between 250 and 3000 gates can be devoted to security functions. It is
interesting to recall that for a standard implementation of the Advanced Encryp-
tion Standard (AES), 20-30K gates are needed. Additionally, power restrictions



should be taken into account, since most RFID tags in use are passive. Further-
more, these systems are unable to store passwords securely because they are not
tamper-resistant at all.

The remainder of the paper is organized as follows. A short review of the
main problems associated with RFID systems is outlined in section 2. In section
3, we prose a minimalist lightweight mutual authentication protocol (M2AP )
for low-cost RFID tags. A security evaluation and performance analysis of this
new protocol is presented in section 4. In section 5, the proposed architecture
for implementing our protocol is explained in detail . Finally, the last section is
devoted to some conclusions summarizing this work.

2 Risks and Threats

Although RFID systems may emerge as one of the most pervasive computing
technologies in history, there are still a number of problems that need to be
solved before their massive deployment. One of the fundamental issues still to
be addressed is privacy. Products labeled with tags reveal sensitive information
when queried by readers, and they do it indiscriminately.

A problem closely related to privacy is tracking, or violation of location pri-
vacy. This happens because the answers provided by tags are usually predictable:
in fact, most of the times, tags provide the same identifier, allowing a third party
to easily establish a link between a given tag and its holder or owner. Even in the
case in which individual tags try not to reveal any kind of valuable information,
this tracking can still be possible by using an assembly of tags (constellation), so
non-trivial solutions must be applied in order to address these tracking problems.

Although the two aforementioned problems are the most important security
questions that arise from RFID technology, there are some others worth mention-
ing: physical attacks, denial of service, counterfeiting, spoofing, eavesdropping,
traffic analysis, etc.

3 Lightweight Protocol

The major challenge of providing security for low-cost RFID tags is that these
devices are very limited computationally, even unable to perform the most basic
cryptographic operations. Surprisingly, most of the proposed solutions are based
on the use of hash functions. Since the work of Ohkubo [7] in 2003, there has been
a huge number of solutions based on this idea [2, 3, 5]. Although this apparently
constitutes a good and secure approach, engineers face the nontrivial problem of
implementing cryptographic hash functions with only 250-3000 gates. In most
of the proposals, no explicit algorithms are suggested and finding one is not an
easy issue, since traditional hash functions (MD5, SHA-1, SHA-2) can not be
used [10]. In [14], we can find a recent work on the implementation of a new hash
function with a reduced number of gates, but although this proposal seems to
be light enough to fit in a low-cost RFID tag, the security of this hash scheme
remains an open question.



In this paper, we propose a lightweight mutual authentication protocol be-
tween RFID readers and tags. In the following, we consider that low-cost RFID
tags are devices with a very small amount of memory and very constrained
computationally (< 1000 gates).

3.1 Suppositions of the Model

Our protocol is based on the use of pseudonyms, concretely on index-pseudonym
(IDS ). The index-pseudonym (96-bit length) is the index of a table (a row) where
all the information about a tag is stored. Each tag has an associated key which
is divided in four parts of 96 bits (K = K1 ‖ K2 ‖ K3 ‖ K4). As the IDS and
the key (K) need to be actualized each time the tag is read, we need in total 480
bits of rewritable memory (EEPROM or FRAM). We also need a ROM memory
to store the static tag-identification number (ID) of 96 bits, which univocally
identifies the tag.

For the implementation of our protocol, all the costly computing operations
are done by the reader. We suppose that readers are devices with enough com-
puting power to generate random numbers and, in general, to perform any kind
of cryptographic operations. On the contrary, tags are very limited devices that
only have around 1000 logical gates for security functions. Our proposal is based
on the use of simple operations: ⊕, ∧, ∨, and sum mod m.

The communication must be initiated by readers due to the fact that low-
cost tags are passive. We also suppose that both the backward and the forward
channels can be listened by an attacker, despite their asymmetry. Finally, we
consider that the communication channel between the reader and the database
is secure.

3.2 The Protocol

We can divide the protocol in four main stages: tag singulation, mutual au-
thentication, index-pseudonym updating and key updating. In this section, we
outline how the protocol works, while in the next one a security evaluation and
a performance analysis are presented.

1. Tag Singulation

Before starting the protocol for mutual authentication, the reader should
identify the tag. The reader will send a “hello” message to the tag, who will
answer the reader by sending its current index-pseudonym (IDS ). By means
of the IDS, the reader will be able to access the tag secret key (K = K1 ‖
K2 ‖ K3 ‖ K4), which is necessary to carry out the next authentication
stage. Only an authorized reader can access this information.

2. Mutual Authentication

Our protocol consists on the exchange of two messages between the reader
and the tag. An scheme of the protocol is illustrated in Figure 1.



Reader → Tag:

IDS
(n)
tag(i) ⊕K1

(n)
tag(i) ⊕ n1 ‖ (IDS

(n)
tag(i) ∧K2

(n)
tag(i)) ∨ n1 ‖ IDS

(n)
tag(i) + K3

(n)
tag(i) + n2

Tag → Reader:

(IDS
(n)
tag(i) ∨K4

(n)
tag(i)) ∧ n2 ‖ (IDS

(n)
tag(i) + IDtag(i))⊕ n1

Fig. 1. M2AP Protocol

- Reader Authentication
The reader will generate two random numbers, n1 and n2. With n1 and
the subkeys K1 and K2 associated to the tag, the reader will generate
A ‖ B:

A ‖ B = IDS
(n)
tag(i) ⊕K1(n)

tag(i) ⊕ n1 ‖ (IDS
(n)
tag(i) ∧K2(n)

tag(i)) ∨ n1 (1)

which is the part of the message that allows the tag authentication. With
n2 and K3, the reader will generate the submessage C:

C = IDS
(n)
tag(i) + K3(n)

tag(i) + n2 (2)

that will be used for updating the index-pseudonym (IDS ) and the key
(K). Once the three parts of the message are generated (A ‖ B ‖ C),
they are concatenated and sent to the tag.

- Tag Authentication
With submessages A and B, the tag will authenticate the reader. From
submessage C, the tag will obtain the random number n2, that will allow
it to update the index-pseudonym (IDS ) and the key (K). Once these
verifications are performed, the tag will generate the answer message.
This message will be composed of two parts D ‖ E. Part D,

D = (IDS
(n)
tag(i) ∨K4(n)

tag(i)) ∧ n2 (3)

will allow the reader to authenticate the tag. By means of part E,

E = (IDS
(n)
tag(i) + IDtag(i))⊕ n1 (4)

the tag is able to transmit its static identifier in a secure form.

3. Index-Pseudonym Updating
Once the tag and the reader have been mutually authenticated, the index-
pseudonym must be updated as follows:

IDS
(n+1)
tag(i) = (IDS

(n)
tag(i) + (n2⊕ n1))⊕ IDtag(i) (5)

4. Key Updating
Another important security issue is key updating. After the reader and the
tag have been authenticated, the key updating stage must be carried out. As



tags are very computationally contrained devices, this task can be made only
by using efficient operations (⊕, ∧, ∨, and sum mod m). These operations
have to be already implemented in the tag for the normal protocol running,
so its use will not imply an increase in the gate counting. Nevertheless, we can
not either forget the temporary requirements of the tag which must be able
to answer 100 times/sec (see section 5) at least. These speed requirements
put a limitation on the number of possible operations that can be performed
with each component of the key (Ki). Taking, all these considerations into
account, the proposed equations for key updating are the following ones:

K1(n+1)
tag(i) = K1(n)

tag(i) ⊕ n2⊕ (K3(n)
tag(i) + IDtag(i)) (6)

K2(n+1)
tag(i) = K2(n)

tag(i) ⊕ n2⊕ (K4(n)
tag(i) + IDtag(i) (7)

K3(n+1)
tag(i) = (K3(n)

tag(i) ⊕ n1) + (K1(n)
tag(i) ⊕ IDtag(i)) (8)

K4(n+1)
tag(i) = (K4(n)

tag(i) ⊕ n1) + (K2(n)
tag(i) ⊕ IDtag(i)) (9)

If we analyze the previous equations, we will obtain that the probability of
zeros and ones for every Ki is approximately 0.5 and the Hamming distance
between Kn

tag(i) and Kn+1
tag(i) is 47.5 (on average). According to the temporary

requirements, for the worst case, which is the architecture of 8 bits, we are
well into the limit of 100 answers/sec, so we successfully fulfill the temporary
requirements in all the cases.

4 Evaluation

4.1 Security Analysis

Once we have presented the proposed mutual-authentication protocol, we will
evaluate its security, studying the same properties that Yang analyzes in [13], in
order to be able to compare their characteristics.

1. User Data Confidentiality
Tag ID must be kept secure to guarantee user privacy. The tag sends it in
the message E (E = (IDS

(n)
tag(i) +IDtag(i))⊕n1) where the ID is added with

the index-pseudonym, then the result xored with the nonce n1. This hides
tag ID to a nearby eavesdropper equipped with an RFID reader.

2. Tag Anonymity
As tag ID is static, we should send it, and all other interchanged messages
in seemingly random wraps (i.e. to an eavesdropper, only random numbers
are sent). As we have seen, readers generate the message A ‖ B ‖ C. This
message will serve, as well as to authenticate the reader, to transmit in a
secure form the random numbers n1 and n2 to the tag. The first random
number (n1) will be used to hide the tag ID and the combination n1 ⊕ n2



will serve to update the index-pseudonym. By means of this mechanism, we
are able to make almost all the computational load to fall on the side of
RFID readers, since one of our hypothesys is that very low-cost tags can
not generate random numbers. Thus, tag anonymity is guaranteed, and the
location privacy of a tag owner is not compromised either. There is one
interesting scenario that we will explain in more detail in the following, as
one could think that in this case, the tracking of a tag owner is possible.
In this scenario, the attacker sends “hello” messages to the tag and receives
as answer the IDS from it. Then, he stops the authentication step. A little
time later he repeats the process, hoping that the IDS has not changed
yet. We know that, if the authentication process fail the IDS can not be
updated. The attacker can not generally track the owner tag because it is
very probable that between two successive requests of the attacker, the tag
is read by one or several legitimate readers, who will update the IDS. If an
intruder wants to guarantee that the IDS has not changed, it needs to send
more than 100 answers/sec in order to saturate the tag, so not allowing a
legitimate reader to access it. In this case, this attack would be considered a
DoS attack, which is an inherent problem in RFID technology as it happens
in other technologies that use the radio channel to which, for the moment,
there is no known solution (apart from spread spectrum).

3. Data Integrity

A part of the tag memory is rewritable, so modifications are possible. In
this part of the memory, the tag stores the index-pseudonym (IDS ) and the
key (K) associated with itself. If an attacker does succeed in modifying this
part of the memory, then the reader would not recognize the tag and should
implement the updating protocol of the database.

4. Mutual Authentication

We have designed the protocol with both reader-to-tag authentication, which
is achieved by message A ‖ B ‖ C, and tag-to-reader authentication, ob-
tained with message D ‖ E.

5. Forward Security

Forward security is the property that security of messages sent today will be
valid tomorrow [7]. Since key updating is fulfilled after the mutual authen-
tication, a future security compromise on an RFID tag will not reveal any
previously transmitted data.

6. Man-in-the-middle Attack Prevention

A man-in-the-middle attack is not possible because our proposal is based on
a mutual authentication, in which two random numbers n1 and n2, refresh
in each iteration of the protocol, are used.

7. Replay Attack Prevention

An eavesdropper could store all the messages interchanged between the
reader and the tag (different protocol runs). Then, he could try to imper-
sonate a reader, re-sending the message A ‖ B ‖ C seen in any of the
protocol runs. It seems that this could cause the losing of synchroniza-
tion between the database and the tag, but this is not the case because



Table 1. Comparison between Protocols

Protocol HLS [11] EHLS [11] HBVI [5] MAP [13] M2AP

User Data Confidentiality × 4 4 © ©
Tag Anonymity × 4 4 © ©
Data Integrity 4 4 © © 4

Mutual Authentication 4 4 4 © ©
Forward Security 4 4 © © ©

Man-in-the-middle Attack Prevention 4 4 × © ©
Replay Attack Prevention 4 4 © © ©

Forgery Resistance × × × © ©
Data Recovery × × © © ×

†† Notation: © Satisfied 4 Partially Satisfied × No Satisfied

after the mutual authentication, the index-pseudonym (IDS ) and the key K
(K = K1 ‖ K2 ‖ K3 ‖ K4) were updated.

8. Forgery Resistance
The information stored in the tag is sent operated (⊕, ∧, ∨, or sum mod m)
with random numbers (n1, n2). Therefore, the simple copy of information
of the tag by eavesdropping is not possible.

9. Data Recovery
Intercepting or blocking messages is a DoS attack that prevents tag identi-
fication. As we do not consider that these attacks can be a serious problem
for very low-cost RFID tags, our protocol does not provide data recovery. In
those scenarios in which this problem is considered important, an extended
version of the protocol is possible and straighforward. In this implementa-
tion, each tag will have l + 1 database records, the first one associated with
the actual index-pseudonym (n) and the others associated with the potential
next index-pseudonyms (n+1, n+2, ... , n+l). Moreover, each tag will need k
additional bits of ROM memory to store the associated data-base entry like
in [5]. As before, the reader will use the IDS to access to all the information
associated with the tag. The reader will store a potential index-pseudonym
each time the answer of the tag is blocked. Once the tag and the reader had
mutually authenticated, the potencial index-pseudonyms could be deleted.
The storage of the potencial index-pseudonyms will allow to easily recover
from the lose or interception of messages.

Table 1 shows a comparison made by Yang [13] of the security requirements
of different proposals, our proposal (M2AP ) is added in the last column.

4.2 Performance Analysis

It is important to carefully analyze the performance of the proposed scheme,
to show that it can safely be implemented even in low-cost tags. As mentioned



in section 3.1, we have assumed that the connection between the reader and
the database is secure. Also, readers and databases are devices with non-limited
computing and storing capabilities. Due to these reasons we can collapse the
notion of the reader and the back-end database into a single entity (R + B). So,
in the performance analysis of our protocol, we will consider that reader and
database form a single entity. As in the previous section, we will consider the
same overheads (computation, storage and communication) used by Yang [13].

1. Computation Overhead
Low-cost RFID tags are very limited devices,with only a small amounts of
memory, and very constrained computationally (only between 250 and 3000
logics gates can be devoted to security-related tasks). Additionally, one of
the main drawbacks that hash-based solutions have is that the load on the
server side (R + B) is proportional to the number of tags. As we can see in
Table 2 this problem is also present in Yang’s solution [13]. On the other
hand, in our proposal, we have completely solved this problem by using an
index-pseudonym that allows a tag to be univocally identified.

2. Storage Overhead
As Yang does, we assume that the sizes of all components are L bits, that
the PRNG and the hash function are h, hk : {0, 1}∗ → {0, 1} 1

2 L and r εU

{0, 1}L. Our protocol is based on pseudonyms, concretely on an L-bit index-
pseudonym (IDS ), so each tag has to store it. For the implementation of our
protocol, each tag should have an associated key of length 4L, which is used
for mutual authentication between the reader and the tag. Moreover, the tag
has to store an unique identification number of length L. The reader has to
store the same information, so it requires a memory of 6L bits.

3. Communication Overhead
The proposed protocol accomplishes mutual authentication between tag (T )
and reader (R + B), requiring only four rounds. As we can see in Table
2, other protocols require, at least, one or two additional messages to be
exchanged. Taking into account that low cost tags are passive, and that
the communication can only be initiated by a reader, four rounds may be
considered as a reasonable number of rounds for mutual authentication in
RFID environments.

5 Implementation

In this section, we will explain in detail the proposed architecture for implement-
ing our protocol: the reader sends the message A ‖ B ‖ C, which is received by
the tag. The tag will check the authenticity of this message for authenticating
the reader. Once the tag has authenticated the reader, it will send the message
D ‖ E to authenticate itself.

One of the first and more relevant subjects to consider is whether to choose a
serial or a parallel implementation. Serial means processing the bitstream bit by
bit, and parallel means processing the whole message, for example, A ‖ B ‖ C at



Table 2. Computational Loads and Required Memory

Protocol Entity HLS [11] EHLS [11] HBVI [5] MAP [13] M2AP

No. of T 1 2 3 2 ¬
Hash Operations B ¬ Nt 3 2Nt ¬

No. of Keyed R ¬ ¬ ¬ 1 ¬
Hash Operations B ¬ ¬ ¬ 1 ¬

No. of T ¬ 1 ¬ ¬ ¬
PRNG Operations R ¬ ¬ ¬ 1 ¬

B ¬ ¬ 1 ¬ ¬
No. of T ¬ ¬ ¬ 4 19

Basic Operations1 R+B ¬ ¬ ¬ 2(Nt + 1) 21

Number of Authentication Steps 6 5 5 5 4

No. of Encryptions B ¬ ¬ ¬ 1 ¬
No. of Decryptions R ¬ ¬ ¬ 1 ¬

Required T 1 1
2
L 1L 3L 2 1

2
L 6L

Memory Size
R+B 2 1

2
L 1 1

2
L 9L 9 9

2
L 6L

†† Notation:
¬ : Not Require Nt: Number of Tags L: Size of Required Memory
1 Basic Operations: ⊕, ∧, ∨ , and +

the same time. It is a common assumption that a minimum of 100 tags should be
authenticated per second. As in [4], due to the low-power restrictions of RFID
tags, the clock frequency must be set to 100 KHz. So, a tag may use up to 1000
clock cycles to answer a reader. Due to these characteristics, it is not necessary
to resort to a parallel implementation. As we can see in Figure 2, we have decided
not to process at the same time all the message, but to do it in blocks of m bits.

The proposed architecture is independent of the word length used. We have
analyzed the features of five different word lengths (m = 8, 16, 32, 64, 96). In
Figure 2, we can see a scheme of the proposed architecture. On the left of the
figure, we have the memory, which is filled with the index-pseudonym (IDS),
the key K (K1 ‖ K2 ‖ K3 ‖ K4) and the ID. The access to the memory is
controlled by a sequencier. Due to the fact that the messages are build up of
three components, we will need a m-bit register to store intermediate results. In
the middle of the figure we have the Arithmetic Logic Unit (ALU). This unit will
made the following operations of size m bits (word length): ⊕, ∧, ∨, and sum
mod m. The ALU has two inputs, one of these values is stored in the memory,
and another which is selected (C 1) between the bitstream and the value stored
in the register. The control signal C 2 will select the operation that will be used
in the ALU.

In the worst case of our protocol (m = 8), we need 1000 clock cycles for
implementing the mutual authentication. So, if we consider that the clock fre-



IDS

K1

K2

K3

K4

ID

Register

Sequencier

bit-stream m bits m bits

m bits

output

C_1

m bits

XOR-m

AND-m

OR-m

SUM-m

m bitsm bits

m bits

C_2

Fig. 2. Logic Scheme

quency is set to 100KHz, this means that the tag answers in 10 millisecond. A
tag can authenticate 100 times per second, so the temporary requirements are
fulfilled in all the cases.

Another important aspect to study is the number of logical gates necessary for
implementing our protocol. The functions ⊕, ∧, and ∨ will be implemented with
the same number of logic gates like the word length (m). For the implementation
of the adder circuit with carry, a parallel architecture is proposed (S = A⊕ [B⊕
CENT ]; CSAL = BCENT + ACENT + AB). Six logic gates are needed for each
bit that is added in parallel. Additionally, a 20% of logic gates are considered for
control functions. The following table summarizes the features of the proposed
architecture:

Table 3. Features

Word Length (m) 8-bit 16-bit 32-bit 64-bit 96-bit

Number of ALU 72 144 288 576 864
Gates Control 14 29 58 115 173

Total 86 173 346 691 1037

Number of Clock Cycles 960 480 240 120 80

Answer/sc 104 208 416 833 1250

As we can see in the previous table, in the best case (m = 8), our protocol
needs around 100 gates. In Table 4, we show also the number of logical gates
needed for implementing various hash functions and AES encryption. A tradi-
tional hash function such as MD5 or SHA needs more than 16K gates, which
is by far higher than the capabilities of low-cost RFID tags [10]. An efficient
implementation of AES encryption has been recently published [6], which does
not need many logical gates (only 3595), but it needs a coprocessor. Unfortu-
nately, this significantly increases the price of RFID tags, and is not attainable
in low-cost RFIDs. Additionally, there is also a proposal of an implementation of



Table 4. Core Comparison

Solutions Implementation Gate Counting

Hash Universal Hash 1.7K Gates
Yksel [14]

MD5 16K Gates
Helion [10]
Fast SHA-1 20K Gates
Helion [10]

Fast SHA-256 23K Gates
Helion [10]

AES Unit2 JungFL [6] 3089 Gates
E/D/RK2 +/+/+

Feldhofer [4] 3595 Gates
E/D/RK1 +/+/+

Amphion CS5265 [1] 25000 Gates
E/D/RK1 +/+/+

†† Notation:
1AES with Coprocessor
2E= Encryption, D=Decryption, RK= Round Key Generation

a new universal hash function for ultra low-power cryptographic hardware appli-
cations. Although this solution only needs around 1.7K gates, a deeper security
analysis of the hash function is needed, and has not been accomplished yet.

Finally, although we have not implemented the circuit physically, due to the
known fact that power consumption and circuit area are proportional to the
number of logical gates, it seems that our implementation will be suitable even
for very low-cost RFID tags.

6 Conclusions

RFIDs tags are devices with very limited computational capabilities, which only
have between 250 and 3000 logics gates that can be devoted to security-related
tasks. Cryptographic primitives such as PRNGs, block ciphers and hash func-
tions lie well beyond the computational capabilities of very low-cost RFID tags,
but until now, most of the security solutions for RFID are based on them.

A new approach must be taken to tackle the problem, at least for low-cost
RFID tags. For this reason, we propose a very lightweight mutual authentication
protocol that could be implemented in low-cost tags (<1000 logic gates). In
order to be able to use our proposal, tags should be fitted with a small portion
of rewritable memory (EEPROM or FRAM) and another read-only memory
(ROM). The assumption of having access to rewritable memory is also implicitly
made in all the existing solutions based on hash functions.



In spite of being very limited in resources, the main security aspects of RFID
systems (privacy, tracking, etc.) have been consider in this article, and solved
efficiently (less than 1000 gates are needed, even in the worst implementation,
in our case m = 96 bits). As shown in Table 2, our protocol displays superior
benefits to many of the solutions based on hash functions. So, not only we have
been able to avoid the privacy and tracking problems, but also many other
attacks such as man-in-the-middle attack, forwarding replay, etc.

Finally, another paramount characteristic of our scheme is its efficiency: tag
identification by a valid reader does not require exhaustive search in the back-
end database. Furthermore, only two messages need to be exchanged in the
singulation stage, and another two in the mutual-authentication stage.

References

1. Amphion: CS5265/75 AES Simplex encryption/decryption.
http://www.amphion.com, 2005.

2. E.Y. Choi, S.M. Lee, and D.H. Lee. Efficient RFID authentication protocol for
ubiquitous computing environment. In Proc. of SECUBIQ’05, LNCS, 2005.

3. T. Dimitriou. A lightweight RFID protocol to protect against traceability and
cloning attacks. In Proc. of SECURECOMM’05, 2005.

4. M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong authentication for RFID
systems using the AES algorithm. In Proc. of CHES’04, volume 3156 of LNCS,
pages 357–370, 2004.

5. D. Henrici and P. Müller. Hash-based enhancement of location privacy for radio-
frequency identification devices using varying identifiers. In Proc. of PERSEC’04,
pages 149–153. IEEE Computer Society, 2004.

6. M. Jung, H. Fiedler, and R. Lerch. 8-bit microcontroller system with area efficient
AES coprocessor for transponder applications. Ecrypt Workshop on RFID and
Lightweight Crypto, 2005.

7. M. Ohkubo, K. Suzuki, and S. Kinoshita. Cryptographic approach to “privacy-
friendly” tags. In RFID Privacy Workshop, 2003.

8. C.M. Roberts. Radio frequency identification (RFID). Computers and Security,
25(1):18–26, 2006.

9. W. Sean and L. Thomas. Automatic identification and data collection technologies
in the transportation industry: BarCode and RFID. Technical report, 2001.

10. Datasheet Helion Technology. High Performance MD5. Fast SHA-1. Fast SHA-256.
hash core for ASIC, 2005.

11. S.A. Weis, S.E. Sarma, R.L. Rivest, and D.W. Engels. Security and Privacy Aspects
of Low-Cost Radio Frequency Identification Systems. In Security in Pervasive
Comp., volume 2802 of LNCS, pages 201–212, 2004.

12. Kirk H.M. Wong, Patrick C.L. Hui, and Allan C.K. Chan. Cryptography and
authentication on RFIDnext term passive tags for apparel products. Computers
in Industry, 57(4):342–349, 2006.

13. J. Yang, J. Park, H. Lee, K. Ren, and K. Kim. Mutual authentication protocol for
low-cost RFID. Ecrypt Workshop on RFID and Lightweight Crypto, 2005.

14. K. Yksel, J.P. Kaps, and B. Sunar. Universal hash functions for emerging ultra-
low-power networks. In Proc. of CNDS’04, 2004.


