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Resum

Els sistemes RFID permeten la identificació ràpida i automàtica d’etiquetes RFID a
través d’un canal de comunicació sense fils. Aquestes etiquetes són dispositius amb cert
poder de còmput i amb capacitat d’emmagatzematge de informació. Es per això que els
objectes que porten una etiqueta RFID adherida permeten la lectura d’una quantitat
rica i variada de dades que els descriuen i caracteritzen, com per exemple un codi únic
d’identificació, el nom, el model o la data d’expiració. A més, aquesta informació pot
ser llegida sense la necessitat d’un contacte visual entre el lector i l’etiqueta, la qual cosa
agilita considerablement els processos d’inventariat, identificació o control automàtic.

Perquè l’ús de la tecnologia RFID es generalitzi amb èxit, es convenient complir
amb diversos objectius: eficiència, seguretat i protecció de la privadesa. No obstant
això, el disseny de protocols d’identificació segurs, privats i escalables és un repte difícil
d’abordar ateses les restriccions computacionals de les etiquetes RFID i la seva natu-
ralesa sense fils. Es per aixó que, en la present tesi, partim de protocols d’identificació
segurs i privats, i mostrem com es pot aconseguir escalabilitat mitjançant una ar-
quitectura distribuïda i col·laborativa. D’aquesta manera, la seguretat i la privadesa
s’aconsegueixen mitjançant el propi protocol d’identificació, mentre que l’escalabilitat
s’aconsegueix per mitjà de nous protocols col·laboratius que consideren la posició espa-
cial i temporal de les etiquetes RFID.

Independentment dels avenços en protocols d’identificació sense fils, existeixen atacs
que poden superar amb èxit qualsevol d’aquests protocols sense necessitat de conèixer
o descobrir claus secretes válides, ni de trobar vulnerabilitats a les seves implantacions
criptogràfiques. La idea d’aquests atacs, coneguts com atacs de “repetidor”, consisteix
en crear inadvertidament un pont de comunicació entre una etiqueta legítima i un
lector legítim. D’aquesta manera, l’adversari utilitza els drets de l’etiqueta legítima per
superar el protocol d’autentificació utilitzat pel lector. En aquesta tesi proposem un
nou protocol que, a més d’autentificació, realitza una revisió de la distància a la qual
es troben el lector i l’etiqueta. Aquests tipus de protocols es coneixen com a protocols
de fitació de distància, els quals no impedeixen aquests tipus d’atacs, però sí que poden
frustrar-los amb alta probabilitat.

Per últim, afrontem els problemes de privadesa associats amb la publicació de infor-
mació recollida a través de sistemes RFID. En concret, ens concentrem en dades de mo-
bilitat, que també poden ser proporcionades per altres sistemes àmpliament utilitzats
tals com el sistema de posicionament global (GPS) i el sistema global de comunica-
cions mòbils. La nostra solució es basa en la coneguda noció de k-anonimat, obtingut
mitjançant permutació i microagregació. Per a aquesta finalitat, definim una nova
funció de distància entre trajectòries amb la qual desenvolupen dos mètodes diferents
d’anonimització de trajectòries.
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Resumen

Los sistemas RFID permiten la identificación rápida y automática de etiquetas RFID a
través de un canal de comunicación inalámbrico. Dichas etiquetas son dispositivos con
cierto poder de cómputo y capacidad de almacenamiento de información. Es por ello
que los objetos que contienen una etiqueta RFID adherida permiten la lectura de una
cantidad rica y variada de datos que los describen y caracterizan, por ejemplo, un código
único de identificación, el nombre, el modelo o la fecha de expiración. Además, esta
información puede ser leída sin la necesidad de un contacto visual entre el lector y la
etiqueta, lo cual agiliza considerablemente los procesos de inventariado, identificación,
o control automático.

Para que el uso de la tecnología RFID se generalice con éxito, es conveniente cumplir
con varios objetivos: eficiencia, seguridad y protección de la privacidad. Sin embargo, el
diseño de protocolos de identificación seguros, privados, y escalables es un reto difícil de
abordar dada las restricciones computacionales de las etiquetas RFID y su naturaleza
inalámbrica. Es por ello que, en la presente tesis, partimos de protocolos de identifi-
cación seguros y privados, y mostramos cómo se puede lograr escalabilidad mediante
una arquitectura distribuida y colaborativa. De este modo, la seguridad y la privacidad
se alcanzan mediante el propio protocolo de identificación, mientras que la escalabili-
dad se logra por medio de novedosos métodos colaborativos que consideran la posición
espacial y temporal de las etiquetas RFID.

Independientemente de los avances en protocolos inalámbricos de identificación, ex-
isten ataques que pueden superar exitosamente cualquiera de estos protocolos sin necesi-
dad de conocer o descubrir claves secretas válidas ni de encontrar vulnerabilidades en
sus implementaciones criptográficas. La idea de estos ataques, conocidos como ataques
de “repetidor”, consiste en crear inadvertidamente un puente de comunicación entre una
etiqueta legítima y un lector legítimo. De este modo, el adversario usa los derechos de la
etiqueta legítima para pasar el protocolo de autenticación usado por el lector. En esta
tesis proponemos un nuevo protocolo que además de autenticación realiza un chequeo
de la distancia a la cual se encuentran el lector y la etiqueta. Este tipo de protocolos
se conocen como protocolos de acotación de distancia, los cuales no impiden este tipo
de ataques, pero sí pueden frustrarlos con alta probabilidad.

Por último, afrontamos los problemas de privacidad asociados con la publicación
de información recogida a través de sistemas RFID. En particular, nos concentramos
en datos de movilidad que también pueden ser proporcionados por otros sistemas am-
pliamente usados tales como el sistema de posicionamiento global (GPS) y el sistema
global de comunicaciones móviles. Nuestra solución se basa en la conocida noción
de k-anonimato, alcanzada mediante permutaciones y microagregación. Para este fin,
definimos una novedosa función de distancia entre trayectorias con la cual desarrollamos
dos métodos diferentes de anonimización de trayectorias.
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Abstract

Radio Frequency Identification (RFID) is a technology aimed at efficiently identifying
and tracking goods and assets. Such identification may be performed without requiring
line-of-sight alignment or physical contact between the RFID tag and the RFID reader,
whilst tracking is naturally achieved due to the short interrogation field of RFID readers.
That is why the reduction in price of the RFID tags has been accompanied with an in-
creasing attention paid to this technology. However, since tags are resource-constrained
devices sending identification data wirelessly, designing secure and private RFID iden-
tification protocols is a challenging task. This scenario is even more complex when
scalability must be met by those protocols.

Assuming the existence of a lightweight, secure, private and scalable RFID identifi-
cation protocol, there exist other concerns surrounding the RFID technology. Some of
them arise from the technology itself, such as distance checking, but others are related to
the potential of RFID systems to gather huge amount of tracking data. Publishing and
mining such moving objects data is essential to improve efficiency of supervisory con-
trol, assets management and localisation, transportation, etc. However, obvious privacy
threats arise if an individual can be linked with some of those published trajectories.

The present dissertation contributes to the design of algorithms and protocols aimed
at dealing with the issues explained above. First, we propose a set of protocols and
heuristics based on a distributed architecture that improve the efficiency of the iden-
tification process without compromising privacy or security. Moreover, we present a
novel distance-bounding protocol based on graphs that is extremely low-resource con-
suming. Finally, we present two trajectory anonymisation methods aimed at preserving
the individuals’ privacy when their trajectories are released.
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Chapter 1

Introduction

This chapter introduces the issues we are facing in this dissertation. In addition, it
briefly describes the solutions we propose to tackle those issues. Finally, the structure
and organisation of the present thesis are outlined.

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation

Radio frequency identification (RFID) allows the simultaneous identification of multiple
RFID tags. The identification process is performed over a wireless channel without
requiring line-of-sight alignment or physical contact between the RFID tags and the
RFID reader. These features together with others like low deployment costs, being
flexible and manageable, computational power, etc., are causing the RFID technology
to be preferred to traditional options (e.g. barcodes systems). Indeed, nowadays several
RFID systems are massively deployed worldwide, namely for assets tracking (e.g. Air
Canada decided to use this technology to control their food trolleys so as to reduce more
than $2 million in unexplained losses [206]), manufacturing (e.g. Boeing uses RFID to
track parts as they arrive, and as they move from one shop to another within their
facilities, thus reducing errors and the need for people to look for parts [207]), supply
chain management (e.g. Paramount farms, the largest producer of pistachio in the US,
receives 50% of its production from a network of about 400 partners; the shipments are
processed by using RFID that reduces processing times to up to 60% [219]), retailing
(e.g. Walmart started to explore the RFID technology in 2003 and devoted at least
three billion dollars to implement it [98]), and for other applications such as payments,
security and access control.

The RFID technology also has the capability of naturally collecting trajectories of
moving objects. Differently to other positioning systems like the GPS, RFID systems
do not continuously track a moving object. Instead, RFID readers located at different
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waypoints create trajectories by identifying tags passing through those waypoints. In
this sense, the RFID technology can be considered a simple and low-cost tracking system
where complex trilateration and precisely timing of signals are not required. This type
of coarse-grained tracking is particularly useful to improve the quality of diagnostic
processes and business decisions in the healthcare industry [112], to monitor animal
behaviour [129], to enhance bike races [215], to provide location based services in indoor
environments [227], etc.

However, all those potential benefits have been partially overshadowed by important
security and privacy threats. RFID tags are resource-constrained devices that respond
to any reader interrogation through an insecure channel. This means that both the data
stored in the tags’ memory and the data transmitted to readers cannot be protected by
cryptographically strong primitives and/or large key sizes. Instead, lightweight cryp-
tography requiring no more than 3000 logic gates should be used [183]. In this scenario,
the privacy of tag bearers could be seriously compromised by disclosing the individual’s
locations or other sensitive information contained in the RFID tag’s memory. Moreover,
other security risks like tag impersonation and counterfeiting increase due to the lack
of randomness and computational power in the tag’s side.

In recent years, several efforts have been made on designing secure and private
RFID identification protocols. Among those protocols, the Randomised Hash-Lock
Scheme [119] has been widely accepted due to its strong privacy and security prop-
erties, and its low computational requirements in the tag’s side, i.e. it only needs a
pseudo-random numbers generator and a one-way hash function. However, this protocol
is not scalable. This is particularly problematic if we consider that millions or billions
of tags should be managed by typical RFID applications (e.g. for supply chain man-
agement or inventory control). That is why many other RFID identification protocols
have been proposed aimed at being secure and private, yet scalable. Nevertheless, none
of them has achieved those three goals at the same time [18], especially when strong
privacy definitions must be met. In the present dissertation, we mainly focus on design-
ing collaborative algorithms that improve the scalability of the Randomised Hash-Lock
Scheme [119]. The algorithms are collaborative in the sense that several readers de-
ployed in the system exchange information in order to efficiently identify RFID tags.
By doing so, our proposals are able to improve the scalability, being as private and
secure as the Randomised Hash-Lock Scheme [119], though.

Regardless of the improvements on designing identification/authentication proto-
cols, Desmedt, Goutier and Bengio [65] presented in CRYPTO’87 a novel attack called
mafia fraud that defeated any authentication protocol. In this attack, an adversary
succeeds by simply relying the messages between a legitimate reader and a legitimate
tag. Initially, the mafia fraud attack was thought to be rather unrealistic because the le-
gitimate prover should take part on the execution of the protocol. However, the RFID
technology clearly opens the door to this type of attack since RFID tags answer to
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any reader’s interrogation without any awareness or agreement of their holders. Other
types of frauds are also applicable to RFID systems. Among them, the distance fraud
attack [44], in which a dishonest prover claims to be closer to the verifier than he really
is, is very important. Both mafia and distance frauds may be accomplished despite of
the authentication protocol used by tags and readers. This means that even assum-
ing secure, private, and scalable RFID identification/authentication protocols at the
application layer, there exists the need for designing protocols that thwart the mafia
and distance fraud attacks. Among the countermeasures against these attacks, distance
bounding protocols based on the measurement of the round trip time of exchanged mes-
sages [33, 35] are considered the most suitable for RFID systems. We contribute by
designing a novel distance bounding protocol based on graphs that is highly resilient to
mafia and distance fraud attacks. Our protocol also deals with other RFID systems’s
requirements such as efficiency and low memory consumption.

Seemingly, an increasing number of articles are being written on RFID security and
privacy areas, namely ultralightweight protocols, distance-bounding protocols, privacy-
preserving lightweight protocols, cryptographically secure pseudo-random numbers gen-
erators, cryptosystems based on elliptic curves, RFID privacy models, zero-knowledge
authentication protocols for RFID systems, ownership transfer protocols, among oth-
ers [1]. All these efforts contribute to the establishment of a technology that may help
to do business as much as other revolutionary technologies like internet do. This means
that, in the near future, billions of RFID tags will send information to thousands of
RFID readers so as to enrich our interaction with the environment and make our pro-
cesses more efficient and resilient. Therefore, gathering huge databases of trajectories
by using the potential of the RFID technology to track moving objects will be a reality.

Analysing this kind of databases can lead to useful and previously unknown knowl-
edge. However, even when tracking is performed by legitimate parties, the privacy of
individuals may be affected by the publication of such databases of trajectories. Simple
de-identification realised by removing identifying attributes is insufficient to protect the
privacy of individuals. Just knowing some locations visited by an individual can help
an adversary to identify the individual’s trajectory in the published database. In this
context, privacy preservation means that no sensitive location ought to be linkable to
an individual. The privacy threat grows if such a trajectory is linked with sensitive
personal data like, price of products, name of drugs, etc, which are usually stored in
the tags’ memory.

These privacy issues motivate our last research line in this thesis. We note that
the boom of the RFID technology strongly promotes the design of privacy-preserving
trajectory anonymisation methods. In this sense, we finally focus on mitigating the
privacy issues that may arise from the publication of databases of trajectories, rather
than on providing security and/or privacy to the RFID technology. In particular, we
propose a novel distance measure for trajectories which naturally considers both spatial
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and temporal aspects of trajectories, is computable in polynomial time, and can cluster
trajectories not defined over the same time span. Mainly based on this metric, we
propose two methods for trajectory anonymisation which yield anonymised trajectories
formed by fully accurate true original locations.

1.2 Contributions

The main contributions of this dissertation are the following:

1. Efficient RFID identification protocol by means of collaborative read-
ers: Designing secure, private, and scalable, RFID identification protocols in a
multiple tags to one reader scenario is a challenge. However, in scenarios where
multiple readers are deployed in the system, scalability may be achieved without
compromising privacy or security. In particular, we consider a scenario where
readers should continuously monitor moving tags in the system. Under such an
assumption, we propose a scheme that has been proven to be efficient in terms of
both server and network overhead.

2. Predictive protocol for the scalable identification of RFID tags: We
improve the state-of-the-art of RFID identification schemes based on collaborative
readers by proposing a protocol that predicts future and past locations of RFID
tags. By doing so, readers are aware of which tags may be identified at some slot
of time. Therefore, the identification process is considerably improved.

3. A new distance-bounding protocol: RFID systems are specially susceptible
to mafia and distance frauds. Among the countermeasures to thwart these attacks,
distance-bounding protocols are considered the most suitable solutions for RFID
systems. We propose a novel distance-bounding protocol only requiring a single
hash computation and a linear amount of memory in the tag’s side. Despite those
limitations, our proposal is highly resilient to both mafia and distance frauds.

4. Privacy-preserving publication of trajectories: It is hard to say how much
personal information and tracking data may be collected by RFID readers in the
near future. Nevertheless, trajectories are massively gathered by GPS and/or
GSM technologies, and apparently the RFID technology is strongly supporting
this massive collection of moving objects data. We focus on designing trajectory
anonymisation algorithms that may work over trajectories not defined over the
same time span. In particular, we propose two algorithms based on microaggre-
gation and permutation aimed at achieving trajectory k-anonymity and location
k-diversity. Both algorithms are based on a novel distance measure that effectively
considers both dimensions: space and time.
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1.3 Organisation

This thesis is organised as follows:

• Chapter 2 provides an overview of RFID systems and describes some challenges
that the RFID technology should address in order to be successfully deployed
worldwide. Also, the controversy between privacy, security, and scalability in
RFID systems is discussed in detail. Other ramifications of RFID systems are
introduced as well, namely distance checking and trajectory anonymisation.

• Chapter 3 presents our first contributions to the scalability issue of RFID iden-
tification protocols. In particular, it describes a protocol based on collaborative
readers that outperforms previous proposals in terms of both number of crypto-
graphic operations and bandwidth usage.

• Chapter 4 introduces the concept of RFID identification protocols based on lo-
cation prediction. This new proposal is also based on collaborative readers, but
it is able to improve the identification process by predicting the next reader that
should identify a tag.

• Chapter 5 is devoted to the description of a novel distance-bounding protocol
based on graphs. The goal of this proposal is to reduce memory requirements
while still achieving high security properties regarding both distance and mafia
fraud. To do so, the concept of distance bounding protocols based on graphs is
introduced and defined.

• Chapter 6 presents our contributions to the anonymisation of moving objects
data. In particular, two anonymisation methods releasing trajectories that contain
true original locations are proposed. Both methods are able to effectively deal
with trajectories not defined over the same time span thanks to a novel distance
measure presented in this chapter.

• Finally, Chapter 7 summarises our contributions and describes possible future
research lines.





Chapter 2

Background

This chapter briefly describes RFID systems, from the very beginning of the technology
to the most recent applications and challenges. Among all the challenges, it focuses on
the security, privacy, and scalability issues of RFID systems, distance checking, and the
anonymisation of mobility data collected by either the RFID or the GPS technologies.
In addition, the main contributions aimed at facing all those challenges are reviewed.
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2.1 A brief history of the RFID technology

The first RFID system dates from the Second World War [191]. In those days, radar
technology was used to detect approaching aircrafts by sending pulses of radio energy
and receiving the echoes generated by those aircrafts. However, visual contact was the
only way to identify an incoming plane as enemy or allied. The Germans solved this
problem by rolling their aircrafts in response to a signal from the ground radar station
so as to change the radar reflection’s polarisation and thus, creating a distinctive blip on
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the radars. In military terms, this is considered a huge advantage over previous radar
systems. Actually, some people believe that this ingenious German military strategy
could have helped the US army to prevent the attack on Pearl Harbor.

Later, the British army introduced a more sophisticated system called Identify
Friend or Foe (IFF). Closer to current RFID systems, each plane was equipped with
a transponder that modulated back the radar signal, thereby allowing identification of
that aircraft as friendly. Due to its simplicity and resiliency, this technology is still
being used by the aviation industry to keep airplanes tracked. However, a not friendly
aircraft should be treated with care since there is no proof of it being an enemy. Ap-
parently, this inconvenience has been the cause of unfortunate accidents (e.g. in 1983,
the Soviet Union army shot down a Korean civilian airplane that was confused with a
spy plane [4]. Similarly, an Iranian civilian plane was shot down in 1988 by the United
States army, and all 290 passengers and crew were killed, including 66 children [3]).

As advances in radio frequency communications systems and low-cost embedded
computers continued through the 1950s, 1960s, and 1970s, several technologies related
to radio waves were developed (e.g. the Electronic Article Surveillance application
(EAS) designed to prevent shoplifting from retail stores). Nevertheless, the first patent
for a passive, read-write RFID tag, was received by Mario Cardullo in 1973. This is
considered the first true ancestor of modern RFID as it was a passive radio transponder
with memory. Since then, RFID systems hardly seem recognisable. Modern RFID tags
may be similar in size to a grain of rice; may have computational capabilities, Read Only
Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM);
may be active in the sense of using batteries rather than RFID readers’ power, etc.

Consequently, over the years, the number of solutions based on RFID has consid-
erably grown. In fact, RFID systems are nowadays more related with business than
with the military industry. In the 1980s and 1990s, RFID applications emerged in
transport, access control, animal identification, tracking nuclear material and trucks
and electronic toll collection [136]. This trend is increasing exponentially in the 21st
century due to tags’s price reduction [8] and RFID standardisation [10]; over 33 billion
RFID tags were produced in 20101 and 2.31 and 2.88 billion tags were sold in 2010 and
2011, respectively2.

2.1.1 RFID systems

An RFID system is supposed to identify and track objects by using radio waves. Similar
to other identification systems such as barcodes, fingerprints or eyes’ iris, the reader
(RFID reader) reads from some source of identification data (RFID tag). Then, the

1According to a study of In-Stat (http://www.in-stat.com) - http://www.instat.com/press.asp?
Sku=IN0502115WT&ID=1545

2According to an extensive research by IDTechEx (http://www.idtechex.com/research/reports/
rfid_forecasts_players_and_opportunities_2011_2021_000250.asp)

http://www.in-stat.com
http://www.instat.com/press.asp?Sku=IN0502115WT&ID=1545
http://www.instat.com/press.asp?Sku=IN0502115WT&ID=1545
http://www.idtechex.com/research/reports/rfid_forecasts_players_and_opportunities_2011_2021_000250.asp
http://www.idtechex.com/research/reports/rfid_forecasts_players_and_opportunities_2011_2021_000250.asp
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identification data are usually processed by a data processing subsystem or server.
However, RFID systems outstand from other identification systems because they may
be nearly as cheap as barcode systems, use a wireless channel like GPS or GSM, and
have some computational capabilities like magnetic cards. That is why more and more
attention has been paid to this technology in recent years.

In technical terms, an RFID system consists of three key elements:

• The RFID tag, or transponder, that contains information and identification data.

• The RFID reader, or transceiver, that queries transponders for information stored
on them. This information can range from static identification numbers to user
or sensory data.

• The data processing subsystem or server, which processes the data obtained from
readers.

Intuitively, all objects to be identified shall be physically tagged with RFID tags.
Then, RFID readers should be strategically distributed to interrogate tags where their
data are required (e.g. a bicycle race timing system needs to place, at least, a reader
at the start line and another one at the finish line). Other properties, namely readers’
interrogation field size, computation capabilities, and memory size of tags, vary from
application to application.

2.1.1.1 RFID tags

Typical transponders (trasnmitters/responders) or RFID tags (see examples in Fig-
ure 2.1), consist of integrated circuits connected to an antenna [79]. The memory
element serves as writable and non-writable data storage, which can range between
few bytes up to several kilobytes. Tags can be designed to be read-only, write-once,
read-many, or fully rewritable. Therefore, tag programming can take place at the man-
ufacturing level or at the application level. A tag can obtain power from the signal
received from the reader, or it can have its own internal source of power. The way tags
get their power generally defines their category:

• Passive tags use power provided by the reader by means of electromagnetic
waves. The lack of an onboard power supply means that the device can be quite
small and cheap.

• Semi-passive tags use a battery to run the microchip’s circuitry but communi-
cate by harvesting power from the reader signal.

• Active tags have their own internal power source, usually a battery, which is
used to power the outgoing signal.



10 Chapter 2. Background

Figure 2.1: Pictures of some types of RFID tags

RFID tags may also be classified according to their processing power. A dumb tag
has no significant processing power, while smart tags have on-board processors able to
perform cryptographic operations [137]. Dumb tags are considered the heart of RFID
systems. Manufacturers and retailers claim that reducing tags’ cost is indispensable
for the success of RFID systems. In some cases, sending a unique identifier would
not necessarily be a problem. For instance, Canada, Israel, Japan, Belgium and The
Netherlands, among other countries, require owners of pets to implant an RFID tag on
their pets. These tags contain information that allow a fast and efficient localisation of
pet owners in case of loss of their pets. Since those tags have a really short identification
range and pets normally do not have enemies aimed at counterfeiting their identities,
dumb tags could be the most practical option for this type of application. In turn,
smart tags are used in those applications requiring some level of security and/or privacy,
namely for e-passports, supply chain management or access control.

Considering that RFID systems rely on radio waves, tags operate in a well-defined
frequency. There are four main bands: low frequency (LF), high frequency (HF), ultra-
high frequency (UHF), and microwave. The exact frequency varies depending on the
application and the regulations in different countries. The frequency bands and the
most common RFID system frequencies are listed in Table 2.1.
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Frequency Band Operating
Range

Applications

125kHz to 134kHz
(LF)

≈ 0.5 Me-
ters

Access control and Animal identifica-
tion

13.56MHz (HF) ≈ 1 Meters Library books and Smart cards
860MHz to 930MHz
(UHF)

≈ 3 Meters Logistic and Parking access

2.4GHz (Microwave) ≈ 10 Meters Electronic toll collection and Airline
baggage tracking

Table 2.1: RFID frequency bands and characteristics.

2.1.1.2 RFID readers

Typical transceivers or RFID readers consist of a radio frequency module, a control unit
and a coupling element to interrogate RFID tags via radio frequency communication.
Readers may issue two types of challenge: multicast and unicast. Multicast challenges
are addressed to all tags in the range of a reader whereas unicast challenges are addressed
to specific tags. In order to keep readers as simple as possible, they have, in general, an
interface that allows them to forward the received data to a data processing subsystem,
back-end database or server. By doing so, readers delegate most of the computational
effort to other computationally more powerful devices.

2.1.1.3 Data processing subsystem

The data processing subsystem or server is used to overcome the computational limi-
tations of tags and readers. On the one hand, tags may not be able to store in their
memory all the information required by readers. Thus, this information is usually stored
in indexed databases. On the other hand, aimed at reducing the cost of RFID readers,
cryptographic functions or processing data algorithms should rely on a data processing
subsystem or server. It should be remarked that a secure connection between readers
and back-end databases is generally assumed; anyway, secure communication between
two computationally powerful devices does not belong to the problems addressed by
the RFID technology. Refer to Figure 2.2 for a graphical representation of the RFID
components and their basic relations/connections.

2.1.2 RFID standards

Nowadays, most technologies we use are governed by standards. Basically, these de-
fine the minimum requirements of some technology in order to achieve interoperability,
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Figure 2.2: Basic components of an RFID system. From left to right: a back-end,
RFID readers, and RFID tags. The back-end uses databases to store identification
information. RFID readers are used to query RFID tags (that can take a variety of
embodiments), retrieve their information, and forward it to the back-end through a
wireless or wired channel.

which is particularly important in RFID systems. To illustrate the need for interoper-
ability in the RFID technology it is important to understand the problems of supply
chains. We may say that a supply chain management begins in a mine or a farm and it
ends on a recycling or garbage plant [86]. In between, the initial material is modified or
processed from stage to stage, it may change hands from one owner to another, etc. In
this globalised world, such material or item, presumably attached to an RFID tag, could
travel around the world more than most people in their whole life (e.g. from manufac-
turers to warehouses, from warehouses to points of sale, from points of sale to retailers,
from retailers to customers, from customers to customers or second-hand retailers, etc).
This means that RFID tags should be correctly read by everyone and everywhere, in
the present and in the future, and without any restricted access or implementation, i.e.
RFID systems should be interoperable.
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Continuing the work of Auto-ID Labs [2], EPCGlobal is leading the development of
industry-driven standards for the Electronic Product Code (EPC) to support the use of
RFID systems [10]. Their task has been to specify frequencies, coupling methods, types
of keying and modulation, information storage capacity, and modes of interoperabil-
ity [89]. Table 2.2 shows the classification of RFID tags according to the EPCGlobal
organisation.

Class Description
Class 0 Passive, read-only.
Class 0+ Passive, write-once but using class 0 protocols.
Class I Passive, write-once.
Class II Passive, write-once with extras such as encryption.
Class III Rewritable, semi-passive, integrated sensors.
Class IV Rewritable, active, may communicate with other active tags.
Class V Rewritable, active, can power and read other tags.

Table 2.2: EPC global tag classes.

On the other hand, the International Organisation for Standardisation (ISO) has
also created standards for RFID. Initially, there was some conflict between EPCGlobal
and ISO specially due to the air interface protocol. At EPCGlobal, the ISO UHF
protocol was thought to be too complex and costly. That is why they developed their
own UHF protocol. Finally, in 2004, EPCglobal developed a second-generation protocol
(Gen 2) aimed at creating a single, global standard that would be closer to the ISO
standards and lastly accepted by ISO. Undoubtedly, this new generation has been the
cornerstone of a massive deployment and global adoption of the RFID technology.

2.1.3 Applications

RFID technology has been characterised by its growing popularity. Consequently, a
large and diverse number of RFID solutions are being used by more and more business
companies. Not surprisingly, national governments have also noticed the benefits of
RFID systems in their ordinary tasks, namely for passport control and document track-
ing. Therefore, it is hard to say exactly how many RFID systems are already deployed
worldwide. However, it is clear that these systems are becoming more popular with
each passing day.

2.1.3.1 Identification

Since the very beginning of the RFID technology during the Second World War, iden-
tification was its primary goal. Nowadays, the scenario is not so different; animal iden-
tification, inventory systems, human implants for identification of patients and drug
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control, are just a few examples of identification by radio frequency. Indeed, other
RFID’s features like tracking implicitly identify their targets, otherwise it would not be
possible to track them.

2.1.3.2 Tracking

There exist several scenarios in which RFID systems are the most suitable for tracking
(e.g. indoor environments or for animal surveillance). Also, in comparison with other
tracking systems like GPS or GSM, the RFID technology is considered much less costly.
That is why tracking, together with identification, is considered one of the primary goals
of RFID systems.

For tracking, tags operating at high frequency are usually required because they
have a larger reading range. Those types of tags are used for tracking in libraries
or bookstores, pallet tracking, building access control, airline baggage tracking, and
apparel and pharmaceutical items tracking (e.g. in February 2008, the Emirates airline
started a trial of RFID baggage tracking at London and Dubai airports [220]; in May
2007, Bear River Supply began to utilise ultrahigh-frequency identification tags to help
monitor their agricultural equipment [30]).

2.1.3.3 Healthcare

The healthcare industry has been heavily investing in RFID. The healthcare supply
chain, prevention of drug counterfeiting or patient safety, are just some examples of
critical processes monitored by RFID. By doing so, patients of a hospital in England
might avoid exposure to diseases caused by infected equipment that was not properly
tracked and classified [7]. Furthermore, discarded drug packaging will not be reusable by
companies attempting to sell counterfeit pharmaceuticals, as noted by Colombian phar-
macy chain Medicarte [5]. Indeed, it is expected that investments in RFID technology
by the healthcare industry rise from 90$ million in 2006 to 2.1$ billion in 2016 [6].

2.1.3.4 Electronic passports

Electronic passports (e-passports) or passports with an embedded RFID tag have been
introduced in many countries, including Malaysia (1998), New Zealand (2005), Belgium,
The Netherlands (2005), Norway (November 2005), Ireland (2006), Japan (2006), Pak-
istan, Germany, Portugal, Poland (2006), Spain (August 2006), The United Kingdom,
Australia and the United States (2007), Serbia (July 2008) and Republic of Korea (Au-
gust 2008). Contrary to most RFID applications, RFID tags on passports are a sort of
smart card rather than a low-cost tag. They are able to execute computationally com-
plex public key cryptosystems with large key size and are tamper-proof. Also, plenty
of information may be stored on the tag’s memory such as, name, birthdate, biomet-



2.1. A brief history of the RFID technology 15

ric information, photo, etc. Such information may be contrasted with the information
available on paper, thereby reducing the risk of passport forgery and fraud. However,
several weaknesses have been found in e-passports [171]. Especially disturbing are those
that allow an adversary to effectively clone an e-passport so that a reader cannot distin-
guish between a legitime and a cloned passport [104, 37]. Anyway, governments claim
that cloning is not a big problem as the electronic information must match the phys-
ical characteristics of users. Furthermore, a third generation of e-passports has been
released in which, to the best of our knowledge, no cloning attack has been reported
yet.

2.1.3.5 Transportation payments

Public transportation payments with RFID cards is probably one of the first perceptible
contacts we have with this technology. By this solution neither we need to have coins
in our pockets nor the bus drivers need to regularly manage and change cash. Hence,
the bus drivers’ workload decreases, thereby reducing the risk of a traffic accident due
to distractions and increasing the compliance with the schedule.

Conforming to the Calypso3 (RFID) international standard, several countries in Eu-
rope and America use RFID passes for public transport systems. In Asia, in particulary
Hong Kong, other type of RFID cards, called Octopus Cards, are also being used for
transport systems. Those cards also have grown to be similar to a cash card, and they
may still be used in vending machines, fast-food restaurants and supermarkets. Many
other public transport payments based on RFID exist (e.g. the Moscow Metro pay
system or the bike sharing system that prevents bicycle theft in Barcelona).

2.1.4 RFID challenges

There are many challenges associated with the deployment of RFID systems (e.g. false
or missing reads due to radio wave corruption, scalability, security and privacy, antenna
design, deployment cost, among others). However, there are other challenges that
may not seem so obvious. The introduction of a new order of things might create a
maelstrom of uncertainty. For many industries, RFID deployment will change their
business process, forcing new investments on personal training, infrastructure, testing,
etc. For example, the McCarran International Airport in Las Vegas had to invest around
125, 000, 000$ to RFID-enable its baggage-tracking system [174]. Therefore, companies
are requiring to carefully evaluate the economic viability of what may represent a big
initial investment of money.

3Calypso is the international electronic ticketing standard for microprocessor contactless smartcards.
It ensures multi-sources of compatible products, and makes possible the inter-operability between
several transport operators in the same area.
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On the other hand, although an RFID system provides plenty of data essential to
control and understand business processes, applications like supply chain management
or real-time tracking may generate such a huge volume of information that could not
be handled by traditional transactional databases (e.g. it is predicted that WalMart
will generate over 7 terabytes of operational RFID data per day [179]). Therefore,
software architectures and back-end databases should be rethought for the collection,
correlation, filtering, and cleansing of RFID data.

Strongly related with technical and deployment details, three different challenges,
namely security, privacy and, scalability, are the main subject of discussion in this
dissertation. Almost every object is likely to be attached to an RFID tag. Therefore,
billions of tags will need to be managed efficiently and in a scalable way. On the
other hand, due to the wireless nature and the computational constraints of RFID tags,
guaranteeing the security of tags’ data and the privacy of tags’ bearers is a challenging
task. The privacy threats grow if we consider all personal data surrounding the huge
amount of information collected from tags. If such data are not properly treated,
sensitive information might be disclosed without the awareness of RFID’s users. This
means that the need for efficient and scalable privacy-preserving methods for microdata
and trajectories increases with the massive deployment of RFID solutions.

2.2 Security, privacy and scalability issues in RFID identi-
fication protocols

The rapid proliferation of RFID solutions strongly supports the vision of ubiquitous
computing, in which tags interacting with readers throughout our everyday life improve
our experiences with the environment. Consequently, in most applications, readers must
be able to identify one or several tags among a set of millions or billions. This scenario
characterises an important property that an RFID identification protocol should meet:
scalability.

As for most identification systems, being secure and private are another two manda-
tory properties of RFID systems. These two features are even more relevant in the RFID
context due to the insecure and easily accessible communication channel between tags
and readers. Generally speaking, security means that data stored in a tag’s memory
should be accessed only by authorised parties and that impersonating or counterfeiting
a tag may be achieved just with a negligible probability. On the other hand, privacy-
preservation may be defined as the ability of tags to generate uncorrelated identification
messages.
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2.2.1 Security

RFID systems are subject to plenty of attacks, from attacks operating on the physical
layer to attacks exploiting weaknesses on those protocols executed at the application
layer [159, 158, 233]. Physical attacks may be as simple as wrapping an RFID tag in
aluminum foil, which potentially causes denial of services (DoS) because readers will be
not able to communicate with such tag. Other physical attacks are more sophisticated
(e.g. jamming attacks that permanently damage radio devices or side-channel attacks
that obtain information from the physical implementation of cryptosystems). However,
in the present dissertation, we focus on adversaries aimed at breaking the identifica-
tion/authentication schemes by using theoretical weaknesses of such algorithms. To do
so, we assume that the adversary can observe, block, modify, and inject messages in
the communication between a tag and a reader. Furthermore, as tags are not tamper-
resistant, we assume an adversary able to clone and tamper with any RFID tag.

The most relevant attack to RFID systems is the so-called spoofing or impersonation
attack. In this attack, an adversary is able to clone a tag without physically replicating
it. By doing so, the adversary gains the privileges of such tag, which is considered
an important security threat for almost every RFID applications. The worst situation
occurs when the adversary is able to break the cryptosystem used during the authen-
tication process (total break), i.e. the adversary gains knowledge of the authentication
protocols and the secrets. In other cases, the adversary does not even need to spend
too much time breaking the cryptographic protocol. Instead, the adversary could im-
personate a tag by replaying and/or manipulating some tag’s responses recorded from
past transactions (forgery). Although these attacks have been successfully thwarted
by lightweight and symmetric key cryptography suitable for low-cost RFID tags [221],
there still exist open issues when privacy and scalability must be also considered.

2.2.2 Privacy

There exist two main privacy concerns in RFID systems: information leakage and trace-
ability. Information leakage is potentially dangerous because tags may reveal sensitive
information about products (e.g. the name of drugs or the price of expensive products).
Such data may be used for quick, easy, and low-cost profiling of individuals, or even for
industrial espionage. The basic idea to prevent information leakage in RFID systems is
to move all the tags’ data to one or several servers. By doing so, only authorised parties
may retrieve those data when required. However, this may not prevent traceability. For
instance, a tag sending its unique identifier does not reveal trivial information about
the object to which is attached, but it is traceable. To thwart traceability, readers and
tags should exchange fresh information at each identification so as to make the response
of two different tags indistinguishable.

The challenge is that indistinguishability is an application-dependent concept where
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the abilities of adversaries, tag’s owners, physical constraints, etc, must be taken into
account in order to provide a fair privacy definition for RFID systems. This is why
different privacy models for RFID have been defined [169, 97, 22, 218, 138]. Among
them, we recall two well-known notions of privacy proposed by Avoine in [22]:

Definition 1 (Universal untraceability). Universal untraceability is achieved when any
pair of tag’s responses, separated by a successfully identification with a legitimate reader,
cannot be correlated with high confidence by an adversary.

Definition 2 (Existential untraceability). Existential untraceability is achieved when
any pair of tag’s responses cannot be correlated with high confidence by an adversary.

Intuitively, existential untraceability is stronger than universal untraceability. Note
that the latter ensures privacy against passive adversaries only. That is why protocols
that achieve universal untraceability are usually referred as passively private, whilst
those protocols achieving existential untraceability are referred as actively private [18].

There exist other notions of privacy in RFID systems like forward and backward
untraceability. Both notions rely on the fact that RFID tags are not tamper-resistant
and thus, an adversary may be able to get full access to the internal state of a tag.
Informally, backward and forward untraceability ensure that revealing the internal state
of a tag cannot help an adversary to identify previous or future transactions of such
tag. However, both are beyond the scope of this dissertation (interested readers may
refer to [34, 186, 64, 202, 51, 192, 186, 34, 138]).

2.2.3 Why is secure, private, and scalable identification hard?

An RFID identification system where tags send their unique identifier in plain text to
readers is scalable (e.g. EPC Radio Frequency Identity Protocols Class-1 Generation-2
UHF RFID [10, 9]). In some way, this is how the barcode systems work. However,
from the security point of view, it would be quite easy to counterfeit an RFID tag
just by building a device able to replay the unique identifier of this tag, which was
previously eavesdropped or maybe read from the tag’s embodiment. Some RFID man-
ufacturers argue that, in any case, counterfeiting an RFID tag is much more difficult
than counterfeiting a barcode label. Actually, this is true for RFID tags intended as
the replacement of barcode labels. But RFID systems aimed at being an active part of
the future of pervasive computing need anti-counterfeiting measures; they need entity
authentication [156].

Public key cryptography (PKC) is known to achieve private and scalable authen-
tication. Actually, most of the applications we use nowadays are protected by PKCs,
namely secure remote login (SSH), digital signatures, internet key exchange (IKE), dig-
ital cash and secure transparent voting. That is why so many efforts have been devoted
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to designing and implementing asymmetric cryptosystems such as Elliptic Curve Cryp-
tosystem (ECC) [32] and N-th Degree Truncated Polynomial Ring (NTRU) [105], in
RFID tags. However, they require a high number of logic gates to be implemented
in tags. Therefore, the price of tags will increase drastically to accommodate those
cryptosystems in RFID tags. Even though other proposals [155] reduce the number
of required logic gates by performing some pre-computation and storing partial results
in tags, they increase the memory usage to around 1700 bits. It is an open problem
whether public key cryptography will be suitable for low-cost RFID tags. Therefore,
most RFID identification protocols are based on symmetric key cryptography rather
than on public key cryptography.

However, symmetric key cryptography does not satisfy all the requirements of RFID
systems because, in general, it draws scalability problems on the server’s side. Since tags
are not tamper-resistant, each tag must contain a unique and private key with which
encrypt its response. The paradox is that, in order to determine the tag’s identity
the server needs to decrypt the message using the tag’s key, but retrieving the tag’s
key is only possible when the server knows the tag’s identity. Consequently, the server
should perform an exhaustive search looking for the proper key to decrypt the message.
Several protocols overcome this scalability problem by performing an update phase
after the identification process (stateful protocols) [170, 17, 149, 226, 230, 56, 21, 123].
This means that the tag and the reader should share and synchronously update the
next identification message. However, it has been shown [231] that this synchronisation
process must be carefully designed in order to resist Denial of Services attacks. On the
other hand, the update phase is not only useless against active adversaries, but also is
rather inefficient on the tag’s side. Note that a write operation in a tag may take roughly
16.7 milliseconds, while a read operation just needs around 0.007 milliseconds [61].
Indeed, writing in the tag’s memory is a time consuming operation; roughly five times
more time consuming than a classical AES-128 encryption, which needs around 2.8

milliseconds.
In conclusion, three main techniques have been proposed for the private identifica-

tion of RFID tags: (i) Public key cryptosystems that are secure, private, and scalable,
but not suitable for low-cost tags. (ii) Stateful protocols which are scalable, but they
are not strong against active attacks and may be less efficient than other symmetric
key protocols due to the writing operation in the memory of the tags. (iii) Stateless
protocols based on symmetric key cryptography that could be lightweight, private, and
secure, but not scalable. As a result, designing lightweight, secure, private, yet scalable,
RFID identification protocols still is a challenging task.
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2.2.4 Advances in RFID identification protocols

As stated in [59], a tag can be classified according to the operations it supports. High-
cost tags are those that support on-board conventional cryptography like symmetric
encryption and public key cryptography. In turn, simple tags are also considered high-
cost tags, but they only support random number generators and one-way hash functions.
Likewise, low-cost tags can be classified as lightweight tags or ultralightweight tags. Both
are able to compute simple bitwise operations like XOR, AND, OR, etc, but the former
also support a random number generator (RNG) and simple functions like a cyclic
redundancy code (CRC) checksum. Undoubtedly, low-cost and simple tags, intended
as the replacement of the barcode labels, represent the greatest challenge in terms of
security and privacy preservation.

2.2.4.1 Identification protocols for low-cost tags

Several efforts have been made in order to achieve some level of security in low-cost
tags [222, 73, 48]. One of the first proposals in this direction is due to Duc et al. [73].
They designed a protocol where messages are encrypted using a CRC-16 function and
randomised by an updating key process. Although this protocol is not resilient to
desynchronisation attacks [60], its main weakness lies in the linearity of the CRC-16
function. Indeed, Burmester and Medeiros [48] show how to successfully implement an
impersonation attack by eavesdropping only one session of the protocol. In the same
article, four protocols with different levels of privacy are proposed. The first encrypts
messages using the RNG defined in the EPCGlobal2 standard seeded with a key shared
by the tag and the reader. The security of this protocol is based on the statistical
behaviour of the RNG. However, the key is of size 16 bits; therefore, an exhaustive
search on all possible 216 key values can be enough to recover the key. On the other
hand, EPCGen2 does not specify any protection of the RNG against the related-key
attack, in which it is possible to find a correlation between a sequence of outputs given
by the RNG defined in the EPCGlobal2 [48]. Therefore, an adversary could be able
to disambiguate tags that respond with pseudonyms drawn from a EPCGlobal2 RNG
complaint. The solution proposed in [48] is to build a Pseudo Random Function (PRF)
from a RNG [90]. The new PRF has an input size of 32 bits and it is defined by
recursively executing a RNG 16 times.

Other proposals do not even consider tags generating random numbers. In such
protocols, the randomness on the tag’s side is provided by readers. It should be noted
that, those protocols either do not provide anonymity or ensure privacy by updating
tags’ internal state. In 2006, the first three ultralightweight protocols were proposed:
M2AP [182], EMAP [181] and LMAP [184]. Although it was a step forward on the
security of low-cost tags, and many other ultralightweight protocols [48, 185, 59] have
been proposed so far, all of them have been proven to be insecure [229, 25, 55, 187,



2.2. Security, privacy and scalability issues in RFID identification
protocols 21

147, 148]. According to Peris-Lopez et al. [185], the main weakness of these protocols
is the use of triangular functions like AND, XOR, etc. This problem was detected by
Chien [59] and he incorporated a left rotation operation (which is non triangular) to
his proposal named SASI. Nevertheless, the SASI protocol has other weaknesses that
can be found in [25, 55, 187, 185]. As a consequence, Peris-Lopez et al. designed the
Gossamer protocol [185] aimed at being more secure than previous ultralightweight
protocols, though more computationally expensive. In a similar line, Juels proposed a
protocol [113] where each tag has a list of one-time pads that together with the tag’s
keys identify the tag. The protocol is minimalist in the sense that involves only low-
cost operations like: rudimentary memory management, string comparisons, and a basic
XOR. However, the security of this protocol depends on the size of a list that should
be updated at each session.

A completely different approach to the security of RFID systems was proposed by
Juels in [118]. Juels adopts the human-to-computer authentication protocol designed
by Hopper and Blum (HB) [109], and shows it can be practical for low-cost pervasive
devices. HB is a probabilistic protocol consisting of several rounds (around 128 accord-
ing to Hopper and Blum [109]). In each round, the verifier sends n bits of challenge
and the prover responds correctly to each bit with a probability greater than 1/2. At
the end of the protocol, the verifier decides whether the prover gave a sufficient number
of correct bits of response. The HB protocol can be also considered an ultralightweight
protocol. Later, Juels modified slightly the HB protocol proposing a new protocol [118]
(HB+) that claims to be secure against active adversaries. Although HB+ is suitable
for EPC-Gen 2 tags, it has a high false rejection rate (for 80 bits of security, the false
rejection rate is estimated at 44% [88, 87]). Furthermore, the communication over-
heads increase linearly with the security parameter, which may be chosen around the
80 bits [82]. Another protocol based on an NP-complete problem was proposed by
Castelluccia and Soos [54] at RFIDSec’07. Their protocol (ProbIP) is based on the
hardness of the boolean satisfiability problem (SAT), which is proven to be in the NP
class of complexity. However, the protocol is neither private nor secure as was shown
in [177].

A recent proposal [224] based on the hardness of the noisy polynomial interpolation
problem aims to be private and scalable. However, this protocol presents some short-
comings: (i) it has been shown in [36] that the noisy polynomial interpolation problem
can be easier than expected, (ii) the server needs to solve mb polynomials of degree
k where m, b, and k, are predefined security parameters and, considering that typical
values for m and b are 16 and 8 respectively [224], then, the server needs to solve around
128 polynomials which can be considered still too heavy, (iii) tags should be designed
with about 10,000 gates more than regular tags capable of hashing computation.
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2.2.4.2 Identification protocols for simple tags

In general, lightweight RFID identification protocols use a pseudo random number gen-
erator and a symmetric key cryptographic primitive on the tag’s side (e.g. a hash
function or some lightweight block cipher). In this vein, the first AES implementation
devoted to RFID tags was proposed in 2004 [75, 77] (other cryptographic primitives
may be found in [76]). However, these implementations require no less than 3400
logic gates, which is beyond the capabilities of extremely constrained devices such as
RFID tags [183]. That is why several other attempts have been made in order to
find cryptographic primitives designed specifically for low-cost RFID tags. To the best
of our knowledge, one of the most relevant block ciphers dedicated to RFID tags is
PRESENT [193, 38]. Surprisingly, PRESENT only requires between 1000 and 1600
logic gates depending on its variants. Undoubtedly, this improvement supports the
rapid proliferation of RFID identification protocols based on symmetric key cryptogra-
phy. Nevertheless, even considering that those protocols are suitable for very resource-
constrained RFID tags, they should face the scalability issues inherent to these type of
proposals. Next, we discuss some of those proposals according to their time complexity
on the server’s side.

2.2.4.3 Lightweight protocols with linear time complexity

The Improved Randomised Hash-lock Scheme [119, 120] is a popular RFID identification
protocol due to its strong privacy and security properties at a low cost; it only uses a
pseudo-random function generator and a hash function on the tag’s side. This protocol
works as follows. The reader sends a random nonce r1 to the tag. Upon reception, the
tag generates a nonce r2 and computes the response r = h(r1, r2, ID) where ID is its
identifier and h(...) is a one-way hash function. Finally, the reader receives both the
response r and the nonce r2, with which it performs an exhaustive search on its database
looking for an identifier IDi such that r = h(r1, r2, IDi). Figure 2.3 shows a detailed
description of this protocol. Although the improved randomised hash-lock scheme [119,
120] is a private, and secure, RFID authentication protocol, it is not acceptable when a
large number of tags should be managed (e.g. manufacturing processes). Note that this
protocol performs an exhaustive search in the database in order to identify a tag. That
is why several other protocols based on hash functions have been proposed in order to
reduce this linear time complexity.

Another hash-based protocol was proposed by Ohkubo et al. [133]. This protocol
uses hash-chains in order to guarantee forward secrecy. However, a high memory con-
sumption and a linear time complexity O(N) are its main drawbacks. Although Avoine
et al. [26, 28] reduced this time complexity to O(N2/3) by applying a time-memory
trade-off, their improvement demands even more memory on the database than the
original protocol [133]. Another protocol based on hash-chains and resistant to denial-
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Reader (R) Tag (T)
Generates r1

r1−−−→
Generates r2

r←−−− r = (r2, h(r1||r2||IDT ))

Computes rTi
rTi = (r2, h(r1||r2||IDTi))

Identifies T as Ti when rTi = r

Figure 2.3: Scheme of the Improved Randomised Hash-locks Protocol

of-service attacks (DoS) is proposed in [64]. This protocol also achieves forward secrecy,
but it presents some privacy issues as shown in [177].

In order to increase efficiency and reduce resource requirements, some protocols use
a counter instead of a pseudo-random number generator on the tag’s side [62]. By this
technique, tags may dedicate more logic gates to the encryption function and privacy
could be guaranteed without updating the key material. However, this type of protocols
may be vulnerable to impersonation attacks [135].

2.2.4.4 Lightweight protocols with logarithmic time complexity

When looking for scalability, the tree-based protocol proposed by Molnar and Wag-
ner [161] is considered a secure and highly scalable protocol. It achieves a time com-
plexity in the identification process of O(b logNb ) where N is the number of tags and b
is the branching factor of the tree used to store the tag’s identifiers. The idea is that
each tag in the system is represented by a unique path in the tree, which is simply
defined as a sequence of nodes. Then, each tag Ti contains a unique secret key ki and
also contains the keys of the nodes that represent its path in the tree (cf. Figure 2.4).

k01 k11

k02 k12 k22 k32

Ti

k11 k22 ki

Figure 2.4: A tree of depth 3 and branching factor 2. The tag Ti is represented by the
path k11, k22 and by its unique and secret key ki.

Undoubtedly, the unique secret key of each tag is enough to identify it as the im-
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proved randomised hash lock [119, 120] does. However, the tree-based protocol uses the
path’s keys in order to rapidly discard large sets of tags whose keys do not match the
received response. It may do so because tags allow readers to check their paths from the
root to the leaf. Consequently, assuming that a reader knows a sub-path that matches
the tag’s response, it may discard all those tags that do not match this sub-path. How-
ever, since tags share sub-paths and hence they share keys, compromising some tags is
enough to trace other tags in the system [26, 172]. Although a trade-off between privacy
and efficiency may be achieved considering the privacy measure proposed in [173], the
tree-based protocols are considered non-private.

There exist two other tree-based protocols aimed at resisting compromise [153, 143].
However, both use an update phase in order to change the tag’s keys in each successful
execution of the protocol. As shown below, protocols based on updating the key material
do not need complex structures, like trees, in order to be scalable. Furthermore, as
shown in [143], synchronising keys that are shared by several tags is challenging.

2.2.4.5 Lightweight protocols with sub-linear time complexity

A similar idea to the tree-based protocols yields the group-based protocols [24]. In
these protocols each tag belongs to a group and has two keys: a group key (GK) and
an identification key (IDK). Once the tag receives a nonce r1 from the reader, it
generates another nonce r2 and sends back EGK(r1, r2, ID) and EIDK(r1, r2), where
E is a symmetric key encryption function and ID is the tag’s identifier. The server
iterates over all the group’s keys until the decryption of EGK(r1, r2, ID) succeeds. If
so, it recovers ID and then it just needs to check the decryption of EIDK(r1, r2). The
time complexity of this protocol is O(Nk ) where k is the number of tags in each group.
However, if a tag T is compromised by an attacker, she will be able to recover the
identity of every tag belonging to the group of T just by using the group key.

Another type of group-based protocol was proposed in [58]. However, this protocol is
different in the sense that a “meet-in-the-middle” strategy is used to efficiently identify
tags. By this strategy, they reduce the reader computation to O(

√
N logN), which

may be considered sub-linear. However, this protocol is not resistant to compromising
attacks either.

2.2.4.6 Lightweight protocols with constant time complexity

Privacy-preserving RFID identification protocols with constant time complexity are
based, in general, on synchronisation between tags and readers. The idea is that any
response coming from a legitimate tag is somehow expected by the reader. However, in
order to preserve privacy, all the responses might be fresh at each session. Therefore,
at some point, tags should update their key material or renew their next responses. At
the same time, the reader must be sure whether and how the tag updated its internal
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state. Otherwise, the reader should be provided with a mechanism to identify legitimate
tags even when their internal states are unknown or unexpected [231]. Note that this
desynchronisation between tags and readers could easily occur due to communication
failures or active attacks to the protocol.

The basic idea to keep a tag and a server synchronised is to design a mutual au-
thentication protocol so that both update the key material once they have mutually
authenticated [66, 103, 27, 60, 49, 140]. In any case, the server should keep the last
correct key used by every tag in order to resist desynchronisation attacks. The problem
with this approach is that tags are traceable in isolated environments, i.e. as long as
a tag has not been identified by a legitimate reader, it will send the same response to
any reader’s interrogation. Note that this type of protocols are passively private only
(cf. Definition 1).

To tackle this problem, some protocols consider the scalability and privacy issues
as a matter of agreement between tags and readers [203, 197]. This means that a
reader is able to identify a tag in constant time only if the reader was the last one who
interrogated such a tag. Otherwise, the tag’s response looks random for the reader and
thus the tag cannot be identified in constant time. Therefore, this type of protocols is
actively private (cf. Definition 2), but not unconditionally scalable.

Both passively and actively private approaches may be improved by pre-computing
more than one future tag’s responses [152]. Typically, in these approaches tag’s re-
sponses are based on hash chains [197, 78]. Then, the server may efficiently identify
a tag because it had stored enough values of the hash chain used by this tag. There-
fore, by increasing memory requirements on the server, both privacy and scalability
may be improved. However, it should be noticed that the improvement is achieved by
demanding more of a resource that is already quite constrained in tags and servers [179].

2.2.4.7 Identification protocols for high-cost tags

High-cost tags are similar to smart cards. They are far more expensive than low-
cost RFID tags, which could cost as little as 0.05$. Nevertheless, there exist some
applications requiring a high level of security and privacy in which high-cost tags are
not only appropriate, but recommended (e.g. passports or toll payment).

In such tags, there exists the possibility of implementing some public key cryp-
tosystems, especially those requiring less computational capabilities on tags, namely
Elliptic Curve Cryptosystems (ECC) or lattice-based cryptosystems. A typical ECC
implementation could need more than 30K logic gates [124], others are able to reduce
the computational requirements between 10K and 18K logic gates [134, 102], though.

In general, the reduction of computational requirements is achieved by optimising,
manipulating, or removing some operations of the original proposal [131]. The idea
is to reduce as much as possible the computational requirements of public key cryp-
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tosystems while guaranteing security and privacy. However, as shown in [45], the task
could be challenging. In a nutshell, they show that previous ECC proposals for RFID
systems [141, 142] may be vulnerable to tracking and impersonation attacks.

Other approaches perform some pre-computation in order to reduce the computa-
tional overhead on the tag’s side. In [176], Oren and Feldhofer improve Shamir’s public
key scheme [196] by replacing a 260-byte long pseudo-random sequence by a reversible
stream cipher of less than 300 bits. Another trade-off between efficiency and memory is
shown by Hoffstein et al. in [105]. They propose a lattice based cryptosystem referred
to as NTRU, which claims to be faster than ECC during the signature and verification
processes.

The well-known randomised Rabin encryption scheme has been also adapted to fit
the RFID requirements [175]. Even though this protocol initially had some shortcom-
ings, it was later improved in [225]. Finally, differently to classical public key cryp-
tosystems, a lightweight identification protocol requiring around 3000 logic gates was
proposed in [130]. This protocol uses some ECC elements to strengthen RFID security.
However, in order to decrease computational demands it does not provide a trapdoor
function as ECC cryptosystems generally do. Hence, this approach presents the same
scalability problem of other symmetric key cryptosystems.

2.2.4.8 Other approaches

According to the EPC standard, each tag contains a KILL password. A reader knowing
the KILL password of a tag is able to disable this tag permanently. Therefore, after the
shipping check-out process tags could be “killed” in order to preserve the privacy of their
holders. Although this measure prevents privacy disclosure, it may not be practical in
the long-term because tags cannot be reused. That is why Spiekermann and Berthold
proposed a simple scheme so that users are able to disable/enable RFID tags when
needed [205]. A more sophisticated, yet complex idea, is proposed in [74]. When a tag
enters the post-purchase phase, it supports the ability to change into privacy mode. In
this mode, tags only accept zero-knowledge proofs from legitimate devices.

There exist other proposals relying on re-encryption in which tags offload most of
the computational effort during encryption to the readers or third devices [194, 115, 91].
Those proposals are somehow based on updating the key material in tags. However,
they use public key cryptography to re-encrypt the plaintext stored in tags. Therefore,
readers knowing the proper private key can obtain the plaintext by decrypting only
once, instead of several times as it is usually the case with symmetric key cryptogra-
phy. Other examples of proposals using a third device are RFID guardian [190], RFID
enhancer proxy [117], noisy tags [53] and the blocker tag [116, 114]. In addition to
those proposals, there exist other proposals based on assumptions not considered by
most RFID solutions. In particular, implementation of physically unclonable functions



2.3. Other issues in RFID systems 27

(PUF) in tags have been shown to be useful to cope with the tampering issues of RFID
tags [217, 40, 46].

2.3 Other issues in RFID systems

Tracking and identifying are the main goals of an RFID system. In consequence, those
challenges related to the identification process may seem much more relevant than
others. However, RFID systems should face many other challenges depending on their
application. For instance, RFID solutions for access control require tags to be in the near
proximity of readers. However, the RFID technology is not able to measure the distance
from readers to tags as the GPS technology can do. This clearly opens the challenge
of designing distance-bounding protocols dedicated to RFID tags [100]. Furthermore,
the proper use of RFID data still is an open issue. Thanks to the RFID technology,
the trajectories of individuals could be easily collected and released by supermarkets,
hospitals, or amusement parks. Therefore, efficient trajectory anonymisation algorithms
are a need for protecting the privacy of RFID users.

2.3.1 Distance checking

In 1987, Desmedt, Goutier and Bengio [65] presented an attack that defeated any au-
thentication protocol. In this attack, called Mafia Fraud, the adversary passes through
the authentication process by simply relaying the messages between a legitimate reader
(the verifier) and a legitimate tag (the prover). In that way, she does not need to
modify or decrypt any exchanged data. Initially, this attack was thought to be rather
unrealistic because the prover should actively participate in it. However, RFID tags
respond to any reader request without any agreement or awareness of their bearer, a
feature that clearly opens the door to this type of attack.

Actually, there exist some proofs of concept showing the feasibility of the mafia
fraud. In 2005, Hancke showed that two colluders 50 meters apart can perform a mafia
fraud attack through a radio channel [99]. This is particulary dangerous because that
distance is long enough to mount a mafia fraud attack in almost every payment or
access control systems. Not surprisingly, this attack has been successfully applied to
other technologies [84, 101, 125, 144] namely, Bluetooth, contactless smart card, and
NFC.

Another attack based on cheating the distance between provers and verifiers was
introduced in 1993 by Brands and Chaum [44]. In this attack, named Distance Fraud,
a dishonest prover claims to be closer to the verifier than she really is. Figures 2.5
and 2.6 illustrate both mafia and distance fraud respectively. For both figures, the
circle represented the maximum distance at which a prover should be authenticated.
Formally, we may define both frauds as follows [23]:



28 Chapter 2. Background

Definition 3 (Mafia fraud). A mafia fraud is an attack where an adversary passes an
authentication protocol by using a man-in-the-middle strategy between the reader and an
honest tag located outside the neighbourhood of the verifier.

Definition 4 (Distance fraud). A distance fraud is an attack where a dishonest and
lonely prover claims to be in the neighbourhood of the verifier when actually she is not.

Reader

Adversary

Tag

Figure 2.5: Mafia fraud: an adversary try-
ing to be authenticated by applying a man-
in-the-middle attack.

Reader

Tag

Figure 2.6: Distance fraud: a legitimate
prover is farther from the verifier than it
is expected.

2.3.1.1 RFID distance-bounding protocols

In 1993, Brands and Chaum [44] proposed a countermeasure that prevents such attack
by computing an upper bound of the distance between the reader and the tag to authen-
ticate: the distance-bounding protocol. By doing so, mafia and distance frauds could not
be completely prevented, but these protocols may effectively thwart them. However, it
was not until 2005 that the first distance-bounding protocol dedicated to RFID came
to the light [100]. The protocol is split in two phases: a slow phase, in which reader and
tag exchange two nonces, and carry on resource-consuming operations; followed by a
fast phase divided into n rounds where, in each one, the reader measures the round trip
time (RTT) of the challenge/response process. Considering that radio waves cannot
propagate faster than light, the reader is able to bound the distance between itself and
the tag. These communications also provide an identity proof of the tag. Unfortunately,
the adversary success probability regarding mafia and distance frauds is (3/4)n while
one may expect (1/2)n (the adversary’s success probability at each round is expected
to be 1

2). Since then, several RFID distance-bounding protocols have been proposed in
order to improve the resistance to both frauds.
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Among all the RFID distance-bounding protocols, we differentiate two main families.
(i) Those requiring an additional slow phase after the fast phase. This final phase may
be used to sign the messages transmitted during the fast phase or to check any other
information. (ii) Those that, closer to the Hancke and Kuhn proposal [100], end the
protocol after the fast phase.

Brands and Chaum [44] proposed the first distance-bounding protocol relying on
a signature after the fast phase. In the first slow phase, the prover commits to the
verifier a sequence of n bits m1, · · · ,mn. Then, during the fast phase, the verifier sends
a challenge ci to the prover, who should reply with ri = ci ⊕ mi. Also, the prover
concatenates and signs with his private key all the challenges and responses, i.e. he
sends to the verifier Signk(c1||r1|| · · · ||cn||rn). If some response ri delays more than
a threshold ∆t, the verifier assumes the prover is out its neighbourhood. Finally, if
the prover succeeds in all rounds, the verifier checks the received signature in order to
authenticate the prover. This protocol is considered strong in the sense that both mafia
and distance fraud attacks cannot succeed with probability higher than

(
1
2

)n.
There exist other distance-bounding protocols based on the Brands and Chaum

proposal [128, 50]. Since both distance and mafia fraud resistance cannot be improved,
those protocols aim at improving the resistance to a new type of fraud called terrorist
fraud [23] (cf. Definition 5), this type of fraud is out of the scope of this dissertation,
though.

Definition 5 (Terrorist fraud). A terrorist fraud is an attack where an adversary defeats
a distance bounding protocol using a man-in-the-middle strategy between the reader and a
dishonest tag located outside of the neighbourhood, such that the latter actively helps the
adversary to maximise her attack success probability, without giving her any advantage
for future attacks.

In practice, the final signature represents an additional delay. Besides, according
to [29], as the authentication entirely relies on this phase, if the latter is interrupted or
not reached, then the whole process is lost. This means that secure distance-bounding
protocols not requiring a final signature are preferred.

Among the protocols without a final signature, Avoine and Tchamkerten’s proto-
col [29] is the most resilient to mafia and distance frauds. They introduced the notion of
distance-bounding protocols based on trees. The idea is that prover and verifier agree
on a decision tree of depth n, which contains in its nodes the correct responses for any
sequence of challenges c1, · · · , ci (1 ≤ i ≤ n). Since the values of the nodes are randomly
chosen at the beginning of the protocol, the probability that two different sequences of
challenges c1, · · · , ci and c̃1, · · · , c̃i contain the same response is 1

2 . Intuitively, this prop-
erty dramatically reduces the mafia and distance fraud success probability. However,
storing a tree of depth n is prohibitive for most RFID tags.

In comparison with Avoine and Tchamkerten’s protocol [29], just Kim and
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Avoine’s [126, 127] protocol achieves such a high resistance to mafia fraud. Furthermore,
their protocol only requires 4n bits of memory on the tag’s side where n is the number
of rounds. In this protocol, the prover is armed with a mechanism to detect whether
it is the target of a mafia fraud attack. Then, once the prover detects the attack,
it responds randomly to the subsequent rounds. Therefore, the probability of success
of the adversary considerably decreases. However, the more efficient the mechanism,
the weaker the protocol against a distance fraud attack. In consequence, the Kim and
Avoine’s protocol [126, 127] might not be appropriate when both mafia and distance
frauds need to be thwarted.

2.3.2 Trajectory anonymisation

The location of an individual can be determined by different techniques. Possibly,
the most conventional and ancestral of these techniques is the visual identification of
that individual in some place at some moment. Nowadays, this task is far easier since
there is no need for a person monitoring or harassing another person. Instead, several
technologies widely adopted worldwide can perform this task for us automatically (e.g.
surveillance cameras, credit card transactions, RFID identification, among others). In
addition, today’s pervasiveness of location-aware devices like mobile phones and GPS
receivers helps companies and governments to easily collect huge amount of information
about the movements of people.

Analysing and mining this type of information, also known as trajectories or spatio-
temporal data, might reveal new trends and previously unknown knowledge to be used
in traffic, sustainable mobility management, urban planning, supply chain management,
etc. By doing so, resources can be optimised and business and government decisions
can be solid and well-founded. As a result, it is considered that both companies and
citizens profit directly from the publication and analysis of databases of trajectories.
However, there are obvious threats to the privacy of individuals if their trajectories are
published in a way which allows re-identification of the individual behind a trajectory.

A tentative solution to preserve individuals’ privacy is de-identification, that is, to
remove all the identifying attributes of individuals. However, this is often insufficient
to preserve individuals’ privacy. Another set of attributes, known as quasi-identifiers,
together with external information, can be used to re-identify the individual behind a
record. For instance, it has been shown that the tuple {zip-code, gender, and date of
birthday} is unique for the 87% of the population of United States [209]. As an example
in the context of spatio-temporal databases, let us consider a GPS application recording
the trajectories of some people. Daily routine indicates that a user’s trajectory in the
morning is likely to begin at home and end at her work place. This information can be
easily linked to a single user, whose identity might be obtained from an external source
of information like telephone directories or social networks.
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Estimating how much external information is available to an adversary is a chal-
lenging task [122]. Furthermore, the time information and its relation with the spatial
information gives a distinctive nature to the spatio-temporal data over the microdata,
i.e. over records describing users’ data without a sequential order. That is why tra-
ditional anonymisation and sanitisation methods for microdata [85] are not suitable
for spatio-temporal data and viceversa. Therefore, specific anonymisation algorithms
devoted to thwarting privacy attacks on published databases of trajectories are increas-
ingly needed.

2.3.2.1 k-Anonymity and `-diversity

A lot of work has been done in anonymising microdata and relational/transactional
databases [195, 209, 214, 154, 223, 145, 168, 71, 232, 201, 208, 146]; see also the recent
survey [85]. A usual goal in anonymisation is to achieve k-anonymity [195, 209], which
is the “safety in numbers” notion.

An anonymised microdata set is said to satisfy k-anonymity if each combination of
quasi-identifier attribute values is shared by at least k records. Therefore, this property
guarantees that an adversary is unable to identify the individual to whom an anonymised
record corresponds with probability higher than 1/k.

Another useful privacy notion is `-diversity [154], which improves k-anonymity by
diversifying the sensitive attributes values of each group of records that can be isolated
by an attacker. This privacy notion is motivated by the fact that even when an adversary
cannot identify the individual’s record among a set of k records with probability greater
than 1/k, she could easily retrieve the individual’s sensitive values with high level of
confidence, e.g. if the k records have the same sensitive attributes values. In [154, 145],
different considerations regarding the `-diversity privacy notion can be found.

2.3.2.2 Microaggregation

k-Anonymity cannot be directly achieved with spatio-temporal data, because any point
or time can be regarded as a quasi-identifier attribute [12]. Direct k-anonymisation
would require a set of original trajectories to be transformed into a set of anonymised
trajectories such that each of the latter is identical to at least k − 1 other anonymised
trajectories. This would obviously cause a huge information loss.

Generalisation was the computational approach originally proposed to achieve k-
anonymity [195, 209]. Later, Zhang et al. introduced the permutation-based ap-
proach [232], that has the advantage of not being constrained by domain generalisation
hierarchies. In [72] it was shown that k-anonymity could also be achieved through
microaggregation of quasi-identifiers. Microaggregation [68] works in two stages:

1. Clustering. The original records are partitioned into clusters based on some simi-
larity measure (some kind of distance) among the records with the restriction that
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each cluster must contain at least k records. Several microaggregation heuristics
are available in the literature, some yielding fixed-size clusters all of size k, ex-
cept perhaps one (e.g. the MDAV heuristic [72]), and some yielding variable-size
clusters, of sizes between k and 2k − 1 (e.g. µ-Approx [69] or V-MDAV [200]).

2. Anonymisation. Each cluster is anonymised individually. Anonymisation of a
cluster may be based on an aggregation operator like the average [68] or the me-
dian [72], which is used to compute the cluster centroid; each record in the cluster
is then replaced by the cluster centroid. Anonymisation of a cluster can also be
achieved by replacing the records in the cluster with synthetic or partially syn-
thetic data; this is called hybrid data microaggregation [67] or condensation [14].

2.3.2.3 Clustering algorithms for trajectories

Just like in microdata records, suppressing direct identifiers from trajectories is not
enough for privacy [121]. Consequently, several anonymity notions and methods for tra-
jectories have been proposed [106, 96, 107, 42, 180, 41, 12, 166, 211, 160, 167, 228, 162,
13, 108, 11, 163]. Among those works, we next review the ones that try to achieve some
notions of trajectory k-anonymity. Other comparisons of several trajectory anonymisa-
tion methods can be found in [41, 13].

A naive approach for achieving k-anonymity is by suppression of attribute values,
which is generally used on categorical nominal data where perturbation methods are not
well suited. One of the first suppression-based methods for trajectory anonymisation
is due to Terrovitis and Mamoulis [212]. They consider trajectories to be sequences
of addresses taken from an address domain P and adversaries controlling subsets of
addresses of P. Thus, the adversary’s knowledge can be represented as a database
of projections of original trajectories over the addresses in P that she controls. Then,
they propose a greedy algorithm aimed at guaranteeing that no address unknown by the
adversary can be linked with any user with probability higher that some threshold. The
main problem with this approach is that dealing with all possible adversary’s knowledge
causes an anonymisation problem harder than the simpler k-anonymity problem in
relational databases, which is already known to be NP-Hard [157].

Abul, Bonchi and Nanni proposed a notion of trajectory k-anonymity assuming
uncertainty on the data provided by technologies like GPS [12, 13]. They also proposed
two methods to achieve privacy according to their notion of privacy. In the original
method –Never Walk Alone (NWA) [12]–, the set of trajectories is partitioned into
disjoint subsets in which trajectories begin and end at roughly the same time; then
trajectories within each set are clustered using the Euclidean distance. In the follow-up
method –Wait For Me (W4M) [13]–, the original trajectories are clustered using the edit
distance on real sequences (EDR) [57]. Both approaches proceed by anonymising each
cluster separately. Two trajectories T1 and T2 are said to be co-localised with respect
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to δ in a certain time interval [t1, tn] if for each triple (t, x1, y1) in T1 and each triple
(t, x2, y2) in T2 with t ∈ [t1, tn], it holds that the spatial Euclidean distance between
both triples is not greater than δ. Anonymity in this context means that each trajectory
is co-localised with at least k − 1 other trajectories ((k, δ)-anonymity). Anonymisation
is achieved by spatial translation of trajectories inside a cluster of at least k trajectories
having the same time span. In the special case when δ = 0, the method produces
one centroid/average trajectory that represents all trajectories in the cluster. Ad hoc
preprocessing and outlier removal facilitate the process. Utility is evaluated in terms
of trajectory distortion and impact on the results of range queries. The problem with
the NWA method is that partitioning the set of all trajectories into subsets sharing the
same time span may produce too many subsets with too few trajectories inside each
of them; clearly, a subset with less than k trajectories cannot be k-anonymised. Also,
setting a value for δ may be awkward in many applications (e.g. trajectories recorded
using RFID technology).

Another k-anonymity based notion for trajectories consisting of ranges of points
and ranges of times has been proposed in [166] and [167]. It uses clustering to minimise
the “log cost metric”, which measures the spatial and temporal translations with user-
provided weights. Minimising the log cost therefore maximises utility. The clusters are
anonymised by matching points of the trajectories and generalising them into minimum
bounding boxes. Unmatched points are suppressed and so are some trajectories. The
anonymised data are not released; instead, synthetic “atomic” trajectories (having unit
x-range, y-range and time range) are generated by sampling the bounding boxes. This
approach does not release standard trajectories but only trajectories with unit ranges.

In [162], k-anonymity means that an original trajectory T is generalised into a tra-
jectory g(T ) (without the time information) in such a way that g(T ) is a sub-trajectory
of the generalisations of at least k − 1 other original trajectories. Ignoring the time
information during anonymisation and complex plane tessellations used to achieve the
k-anonymity are the main drawbacks of this method. Utility is measured by comparing
clustering results.

[111] is another proposal for achieving k-anonymity of trajectories by means of
generalisation. The difference lies in the way generalisation is performed: the authors
propose a technique called local enlargement, which guarantees that user locations are
enlarged just enough to reach k-anonymity, which improves utility of the anonymised
trajectories.

The adapted k-anonymity notion for trajectories in [228] is stated in terms of a
bipartite attack graph relating original and anonymised trajectories such that the graph
is symmetric and the degree of each vertex representing an anonymised trajectory is at
least k. The quasi-identifiers used to define identities are the times of the positions in
a trajectory, and the anonymity is achieved by generalising points of trajectories into
areas on the grid. An information loss metric defined for such areas is used to evaluate
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the utility of the anonymised data.
Some approaches assume that the data owner anonymising the database knows

exactly what the adversary’s knowledge is. If the adversary is assumed to know different
parts of the trajectories, then those are removed from the published data [211]. However,
this work only considers sequential place visitation without real time-stamps. If the
adversary is assumed to use some prediction of continuation of a trajectory based on
previous path and speed, then uncertainty-aware path cloaking [107, 108] can suppress
these trajectories; this procedure, however, results in high information loss.

Additional related work about anonymisation of spatio-temporal data can be found
in the literature about location privacy, focused on applications such as privacy-aware
location-based services (LBS) or privacy-aware monitoring of continuously moving ob-
jects. Location privacy in the LBS-setting was first proposed in [95]. See [178, 110] for
recent papers on location privacy, in which mobile objects protect the privacy of their
continuous movement. Location privacy is enforced on individual sensitive locations
or unlinked locations in an on-line mode; often, data are anonymised on a per-request
basis and in the context of obtaining a location-based service. In this dissertation, we
focus on off-line publishing of whole spatio-temporal databases rather than protecting
specific individuals from LBS providers or on-line movement monitoring. In general,
a solution to location privacy is not a solution for publishing anonymised trajectories,
and vice versa.



Chapter 3

Improving Scalability by Means of
Distributed Readers

This chapter describes our first RFID identification proposal, which is based on collab-
orative readers. Its aim is to improve flexibility and efficiency.

Contents
3.1 An efficient RFID identification protocol by means of collab-

orative readers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.1 Brief recap of the Original protocol . . . . . . . . . . . . . . . . . 37
3.1.2 Assumptions and definitions . . . . . . . . . . . . . . . . . . . . . . 38
3.1.3 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.4 Protocol execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.5 Alarm/recovery protocol . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.6 The role of p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.7 Our protocol in a centralised back-end . . . . . . . . . . . . . . . . 44

3.2 Experimental results and evaluation . . . . . . . . . . . . . . . . 45
3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

The idea of making tags and/or readers collaborate has been proposed and tested.
With regard to tags, in [39] and [151] a distribution of tags is used to guide mobile robots
equipped with RFID readers and perform precise indoor positioning, respectively. Also,
in [63] tags cooperate in order to detect when and for how long a tag has been tampered
with. With regard to readers, to improve the scalability of hash-based solutions without
increasing the number of rounds of the protocol, Solanas et al. proposed an approach
that used collaborative readers deployed in a grid structure [199]. Instead of having a
centralised database with all the tag IDs, each reader maintains a local database (e.g.
in a local cache) in which it stores the IDs of the tags located in its cover area and
the ones in its adjacent neighbours’ area. By doing so, readers no longer need to check
all possible IDs to identify a tag but only a smaller subset of IDs in their local cache.
Although the proposal in [199] is a step forward in terms of scalability, it replicates
too many tag IDs and imposes several constraints to the system (e.g. readers must
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know the exact distance to the tags and the reader distribution is very rigid). In [16],
Ahamed, Rahman and Hoque modified the proposal of Solanas et al. and proposed a
more natural neighbourhood structure using a hexagonal grid (cf. Figure 3.1). Note
that this solution reduces the number of neighbours from nine (in the squared grid) to
six (in the hexagonal grid). However, this proposal has the same limitations of [199].

The idea of distributing tags amongst a number of readers placed in a grid or in
hexagonal cells might resemble the antenna structure of the well-known GSM system
for mobile communications. In fact, readers store information about tags similarly to
what visitor location registers (VLR) do with cell phones in GSM. However, there are
some fundamental differences that make this problem different in the RFID context:

• In GSM, cell phones are active and they are responsible for the registration of
their ID in the VLR.

• Visitor location registers (generally) do not exchange information amongst them.
They mainly communicate with a centralised database known as the home location
register (HLR).

• A centralised database such as the HLR might not exist.

Figure 3.1: Left: Scheme of nine collaborative readers using a squared grid neighbour-
hood [199]. Right: Scheme of four readers using a hexagonal grid neighbourhood [16].
Dashed lines represent neighbourhood relations amongst readers.
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3.1 An efficient RFID identification protocol by means of
collaborative readers

Hash-based identification protocols for RFID tags have shown to be private and secure
but they require a significant computational effort on the readers’ side that is generally
overcome by using a centralised mainframe, which can lead to bottlenecks and delays.
Specifically, the number of operations performed by the mainframe to identify a single
tag is a function of the number of tags (n) in the system, i.e. f(n).

An alternative to the centralised solution is the collaborative approach that was first
described in [199], whose main idea is to distribute the list of tag IDs amongst all the
readers in the system and allow them to identify tags within their cover range without
contacting a central mainframe. The solution proposed by Solanas et al. improves the
scalability of the system with regard to the centralised solution. Ideally, if we consider a
number of readers (m) and a number of tags (n), the number of operations that must be
performed by a reader to identify a tag is a function of ( nm), i.e. f( nm). Unfortunately,
the protocol proposed by Solanas et al. requires the readers to store the IDs of the tags
controlled by neighbour readers and this leads to a significant increase of redundant
IDs. If we assume that the redundancy can be expressed by a factor k, the number of
operations that a reader performs to identify a tag using the protocol described in [199]
is f(k×nm ), where

f(
n

m
) < f(

k × n
m

) < f(n)

Our protocol leverages the idea of collaboration from [199], but implements a new
set of messages that permit the reduction of redundant information. Ideally, we want
k → 1. To do so, thanks to our protocol, readers can be initialised with a parameter
p ∈ [0, 1] that represents the probability for a reader to store tag IDs from its neighbours.
Note that when p = 0, the number of redundant IDs is zero and we reach the optimal
situation where the number of operations required to identify a tag is f( nm).

In addition, network designers/engineers can balance the reader’s computational
cost and its bandwidth usage by tuning p. The smaller p the lower the number of
operations, but the bandwidth requirements are higher.

3.1.1 Brief recap of the Original protocol

The protocol described in [199], that we call original, was designed to allow multiple
readers to collaborate in order to exchange information about tags so as to improve the
scalability of the improved randomised hash-locks (IRHL) identification procedure.

In the original protocol, each reader was responsible for a squared cell and they
were all distributed in a grid structure. Note that, using this distribution, the areas
covered by each reader were disjoint and, by construction, a tag in a given location
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could only be queried by a single reader (this is an important difference with regard to
the protocol described in this chapter).

In the original protocol three main procedures/subprotocols were described:

1. Tag arrival protocol: This protocol is applied when a tag enters the system through
a System Access Point or SAP. A reader controlling this SAP identifies the tag
using IRHL and communicates to all its neighbours the ID of that tag. Then if
that tag moves to any of the cells controlled by these neighbours, they will be
able to identify it.

2. Roaming protocol: This protocol is used when a tag changes its location from a
cell controlled by a reader to another cell. In this case, the reader controlling the
destination cell informs all its neighbours that he is the new owner of the tag and
forwards the ID information of the tag to all its neighbours. Also, the previous
owner sends a message to its neighbours so as to inform that it is no longer the
owner of the tag.

3. Departure protocol: This protocol is used when a tag leaves the system. In
this case a reader controlling a System Exit Point (SEP) simply forwards to its
neighbours the message of deleting that tag from their caches.

3.1.2 Assumptions and definitions

In our proposal, instead of using the concept of unshared cover area, as described in [199],
we use the more general concept of shared cover area.

Definition 6 (Unshared Cover Area (Au)). The unshared cover area of a reader R is
the set of locations controlled by R from which tags can communicate only with R.

Definition 7 (Shared Cover Area (As)). The shared cover area of a reader R is the set
of locations from which tags in the system can communicate with R and possibly with
other readers.

From these definitions it can be derived that given two shared cover areas Asi and
Asj , A

s
i ∩ Asj might be different from the ∅, whilst given two unshared cover areas Aui

and Auj , A
u
i ∩Auj is always ∅. Although this property of the unshared cover areas might

be theoretically useful, it is extremely hard to realise it in practise. Thus, from now on,
when we use the term cover area we will refer to the more realistic concept of shared
cover area described in Definition 7 and, for the sake of clarity, we avoid using the
superscript s.

Let Ai be the cover area of a reader Ri and let A be the area covered by all the
readers in the system. We assume that A ⊆ ⋃iAi, ∀i.

Considering our definition of shared cover area, we define the neighbourhood relation
as follows:
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Definition 8 (Neighbourhood relation). Two readers Ri and Rj are neighbours if their
cover areas Ai and Aj are not disjoint, i.e. Ai ∩Aj 6= ∅.

Our notions of cover area and neighbourhood are more flexible and realistic than
those proposed in [199] and [16]. Also, they lead to a simple criterion for connect-
ing readers, i.e. only neighbour readers will share a communication link to exchange
protocol messages. We assume that each reader in the system is connected to its neigh-
bours (e.g. using WLAN + SSL) and maintains a local database with a list of pairs
(IDT , IDR), where IDT is the identifier of a given tag and IDR is the identifier of the
reader. We also assume that each tag is controlled by a single reader, which is its owner.

Note that by using the notion of shared cover areas the tags moving in a region
shared by two readers are controlled by only one of them. On the contrary, if unshared
cover areas are used, a tag moving from one unshared cover area to another leads to the
change of owner from one reader to another. In Figure 3.2, an example of this behaviour
is shown. If we use shared cover areas, the tag T is controlled by R2 throughout its way.
However, if we consider the notion of unshared cover area, the tag T is controlled by R2

at locations (1), (3) and (5); and it is controlled by R1 at locations (2) and (4). This
unnecessary change of ownership requires communication between readers and increases
the bandwidth usage. Consequently, using shared cover areas may decrease the utilised
bandwidth.

3.1.3 Messages

In our protocol, readers use a number of messages to exchange information about the
ownership of tags and collaborate to identify them. Each message sent by a source reader
(RIDS

) to a destination reader (RIDD
) makes the latter perform an action regarding a

tag (IDT ) (cf. Figure 3.3 for a graphical scheme of the message format and its flow).
Depending on the message, the information sent about the tag can be:

• The tag ID – (IDT ): If RIDS
can identify the tag because it has the required

information in its cache, it can send IDT to RIDD
. This might happen for the

following messages of the protocol: Delete, I am the owner, You are the owner,
and Search messages.

• The response of the tag r = (r2, h(r1||r2||IDT )) and the challenge r1: If
RIDS

is not able to identify the tag, it sends to RIDD
the challenge r1 that it sent

to the tag and the answer r received from the tag. This happens for the Identify
message.

The messages of the protocol are explained in more detail below:
Delete - (IDT ) When RIDD

receives this message, it removes the identifier IDT

from its local cache.
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R1 R2

T 1

T 2

T 3

T 4

T 5

Figure 3.2: Graphical example of two readers R1, R2 and a moving tag T . The tag
T is captured in different positions at different instants T 1, T 2, T 3, T 4, and T 5 (T x

indicates the position of tag T at time x). The squares represent the unshared areas of
R1 and R2. The circles represent the shared areas of R1 and R2.

Message
Operation Source Destination Tag
3 bits 32 bits 32 bits 128 bits

IDS IDD IDT

IDS IDD r,r1
Flow

RIDS
−−−−−−−−−−−−−−−−−−−−−−−−→
Message about the tag (IDT )

RIDD

RIDS
←−−−−−−−−−−−−−−−−−−−−−−−−

Information, ACK or NACK
RIDD

Figure 3.3: Message format and flow

I am the owner - (IDT ) When RIDD
receives this message, it realises that RIDS

claims the ownership of the tag IDT . If RIDD
was the former owner, it sends a Delete

message to its neighbours, excepting RIDS
and its neighbours, to let them know that

it is no longer the owner of that tag. If RIDD
was not the former owner, then it would

generate a random number x ∈ [0, 1], and if x ≥ p it would update its cache with the



3.1. An efficient RFID identification protocol by means of collaborative
readers 41

new ownership information.
You are the owner - (IDT ) When RIDD

receives this message, it takes control
over the tag IDT . It stores the new ownership information in its cache and sends an
I am the owner message to all its neighbours, so as to propagate the new ownership
information.

Identify - (r, r1) This message is sent by RIDS
when it is not able to determine

the ID of a tag (using the Hash Lock protocol). With this message, RIDS
asks RIDD

to identify the tag and return the ownership information stored in its cache. If RIDD

identifies the tag and finds its owner, it sends the ID of the owner back to RIDS
,

otherwise it responds with a NACK message.
Search - (IDT ) When RIDD

receives this message it checks whether the tag IDT is
in its cover area. If it finds the tag, it sends an ACK message back to RIDS

, otherwise
it responds with a NACK.

3.1.4 Protocol execution

Neighbours Tags in the cover

of R Reader R area of R

1 Challenge−−−−−−−−−→
Answer(TID1 )←−−−−−−−−−−−− 2

Answer(TID2 )←−−−−−−−−−−−−
. . .

3 Answer(TIDn )←−−−−−−−−−−−−
Identify tags

if OK → END

if KO
Identify(Tags)←−−−−−−−−−−−−

TagsInformation−−−−−−−−−−−−→
Analyse Info

if missing tags

→ Recovery/Alarm

if OK

4

Build list

Search(Tags)←−−−−−−−−−−− 5

TagsInformation−−−−−−−−−−−−→
Y ouAreTheOwner←−−−−−−−−−−−−

END

Figure 3.4: Scheme of the flow of the identification protocol
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Thanks to the probabilistic nature of our protocol, the number of IDs stored in the
local caches of the readers can be reduced with respect to the protocols presented in
[199] and [16]; however, the flow of messages is a bit more complex. The identification
protocol proposed in this chapter considers three main actors: (i) the tags in the system,
(ii) a reader, and (iii) the neighbours of that reader. The protocol depicted in Figure 3.4
works as follows:

1. A reader (R) sends a challenge (r1) to the tags in its cover range.

2. All tags in the cover range of R answer the challenge.

3. For each tag (T ) responding to the challenge, R tries to identify it using the
hash-locks scheme [119] applied to its local cache.

(a) If it identifies the responding tag, the process finishes.

(b) Otherwise, R sends an Identify message to its neighbours and stores their
answers in its cache. If any of its neighbours identifies the tag, R executes a
recovery procedure described in the next section.

4. Then, R builds a list (L) containing all the tags that it owns (i.e. which are under
its control) and that have not responded to the challenge (e.g. those tags that
have left its cover range).

5. For each tag T ∈ L, R sends a Search message to its neighbours. After receiving
the answers from its neighbours, R sends a You are the owner message to the first
neighbour that responded positively (i.e. ACK) to the search message.

All the readers in the system periodically use this protocol. By doing so, all tags
can be controlled without the intervention of a centralised database. In addition, due
to the fact that readers only store information about the tags of their neighbours with
a given probability p, the number of redundant IDs is reduced with respect to [199, 16]
and, therefore, the computational effort performed by the readers is also reduced.

3.1.5 Alarm/recovery protocol

When a reader is not able to identify a tag and its neighbours do not have information
about this tag either, one may be in two possible situations:

• An unauthorised tag has entered the system.

• A tag has been covered (so as to hide it from the readers) and uncovered in a dif-
ferent location controlled by another reader whose neighbours have no information
about the tag.
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When this situation arises, we propose two possible solutions:

• A centralised solution: This solution is based on maintaining a backup of all tag’s
IDs in a centralised server. Doing so, when neither a reader nor its neighbours
could identify a tag, that reader could request the identification of this tag to
the centralised server. Note that, this solution has a high computational cost but
does not create bottlenecks because the centralised server is supposed to be used
in exceptional cases only.

• A fully decentralised solution: In this case readers can iteratively query their
neighbours so as to find the previous owner of the tag in the system. First the
reader queries its adjacent neighbours (located at one hop), then it queries the
neighbours located at two hops, etc. This procedure finishes when the tag ID
is found or when all readers have been queried. In the first case, our protocol
keeps working normally, in the second case, an alarm is raised. This procedure is
depicted in Figure 3.5. Note that in the worst case, in which all readers in the
system were to be queried, the computational cost would be linear in the number of
tags n. Although the computational cost is high and the communication overhead
might be significant, this situation should happen rarely; hence, it should not
affect the overall efficiency of the proposed protocol.

T

Figure 3.5: A representation of cells covering the monitored area. An unidentified tag
is located in the central cell. The reader in that cell will iteratively query other readers
to identify T . Readers in lighter coloured cells are queried first.
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3.1.6 The role of p

The number of operations performed in a reader to identify a tag is linear with the
number of tag IDs stored in its cache. A reader stores the IDs of the tags in its cover
area (for which it is responsible) – we say that that reader is the owner of those tags. In
addition, a reader may store the IDs of tags located in the cover area of its neighbours.
This way, if a tag moves from the cover area of one of its neighbours, it can identify
that tag without querying its neighbours.

Each reader is initialised with a parameter p. This parameter defines the probability
for a given reader to store neighbour tag’s IDs in its cache. If p = 1 the reader stores all
the IDs of its neighbour tags, on the contrary if p = 0 the reader stores no information
about its neighbours’ tags. If p takes a value in (0, 1) the reader stores a number of IDs
proportional to that value. The main goal of p is to reduce the number of redundant
IDs stored in the cache of neighbour readers.

The number of IDs stored by a reader i (#IDi) can be computed as

#IDi = ni + pi

bi∑
j=1

nij

where ni is the number of tags owned by i, bi is the number of neighbours of reader i, nij
is the number of tags owned by the j-th neighbour of reader i, and pi is the probability
for the reader i to store IDs of tags owned by its neighbours. The total number of
IDs stored in the system (#ID) can be computed as

∑m
i=1 #IDi, where m is the total

number of readers.
In the example shown in Figure 3.6, it is apparent that, by reducing the value of p,

the number of IDs stored in the caches of the readers is also reduced. Consequently, the
number of operations required to identify a tag is also reduced and the whole process
of identifying tags scales better.

Note that the protocols described in [199] and [16] do no support the addition of
this probabilistic property. Thus, the main goal of the proposed protocol, explained in
the following sections, is to allow the use of the parameter p and, as a result, to improve
the scalability of the identification process on the readers’ side.

3.1.7 Our protocol in a centralised back-end

Although our protocol has been designed to work in a distributed way, it could be “sim-
ulated” by a centralised database (i.e. a back-end) connected to a properly distributed
set of readers. By doing so, the back-end would be able to identify tags and “logically”
cluster them in regions (e.g. virtually covered by the readers). Thus, intelligent search
of a tag into these regions might be scalable in terms of computational cost. In addi-
tion, this approach averts the communication overhead associated with the exchange of
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p = 0

5 7 5
7 10 7
5 7 5

p = 0.5

8 12 8
12 18 12
8 12 8

p = 1

Figure 3.6: Number of IDs stored in the readers for different values of p considering that
each reader is the owner of 2 tags. The neighbourhood relations are the ones described
in Figure 3.1-left.

messages between readers because all the communication might be “simulated” within
the back-end.

The main problems of using this approach are: (i) using a single centralised database
leads to a single point of failure and, (ii) the communication of a single back-end with
a (possibly) large number of readers might create bottle-necks and undesired delays.

It might be said that, depending on the special characteristics of the environment
in which the RFID system is to be deployed, engineers may decide whether to use our
protocol “simulated” within a back-end, or use it as a fully distributed non-centralised
protocol.

3.2 Experimental results and evaluation

We have developed a simulator to analyse the number of operations performed by
the collaborative readers during the execution of our probabilistic protocol, and their
bandwidth usage. The simulator allows the deployment of readers without constraints.
The number of readers, their cover range, their location, the number of moving tags,
and the scenario in which they move can be defined at the beginning of the simulation.

We have concentrated on simulations to analyse the theoretical properties of our
protocol and we have left for the future the implementation and testing of a practical
prototype. Although there are some limitations in the off-the-shelf RFID tags, there
exist some EPC UHF Gen 2 tags that can compute hash functions and random numbers
(using ARMADILLO [31]) and can be read at distances of up to 1 meter. Currently,
newer versions with larger reading distances (i.e. 3 m) are under development (cf.
www.oridao.com).

With the aim to evaluate our probabilistic protocol, we compare it with the original
protocol presented in [199]. Although our protocol has no limitations related to the de-
ployment and range of the readers, the original protocol does have some. Consequently,
we simulate the regular distribution of 24 readers (4 × 6) depicted in Figure 3.8 that
the original protocol can handle.

www.oridao.com
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Figure 3.7: Graphical scheme of the simulated scenarios. (From left to right) Sce-
nario with narrow corridors, scenario with wide corridors, scenario with random large
obstacles, scenario with random small obstacles.

We have considered five different scenarios1: (i) An empty scenario in which tags can
freely move, (ii) a scenario with narrow corridors, (iii) a scenario with wide corridors,
(iv) a scenario with randomly placed large obstacles and, (v) a scenario with randomly
placed small obstacles (cf. Figure 3.8 for a screenshot of the simulator and Figure 3.7
for a graphical scheme of the four non-empty scenarios). For each scenario we have
simulated the movement of 103 and 104 tags. We have considered two different tag
behaviours: (i) a random movement and, (ii) a semi-directed movement: tags move
half of the times randomly and half of the times toward a far, randomly-selected point
within the scenario. Each simulation has been repeated 30 times for each value of p in
(0, 1) with 0.1 increments. Globally a total of 7200 simulations have been conducted: 2
types of movement × 5 different scenarios × 12 protocols (11 different p + the original
one) × 30 repetitions × 2 different tag populations (103, 104).

Figure 3.8: Screenshot of the simulator. The cloud of red dots represents the tags
entering the system. Blue circles represent the shared cover area of the readers, which
are identified by a number. Thick black lines represent obstacles. Finally, thin black
lines represent the unshared cover areas that the protocol in [199] would use.

1Some of these scenarios were already used in [199]
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Figure 3.9: Operations performed by the readers controlling 103 and 104 tags for dif-
ferent values of p in all scenarios and considering a random movement pattern. The
lower the better.
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Figure 3.10: Operations performed by the readers controlling 103 and 104 tags for
different values of p in all scenarios and considering a semi-directed movement pattern.
The lower the better.
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Figure 3.11: Total number of bits transmitted by the readers controlling 103 and 104

tags for different values of p in all scenarios and considering a random movement pattern.
The lower the better.
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Figure 3.12: Total number of bits transmitted by the readers controlling 103 and 104

tags for different values of p in all scenarios and considering a semi-directed movement
pattern. The lower the better.
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For each scenario, we have concentrated on analysing the computational cost (in
terms of number of operations performed by readers) and the bandwidth usage (in
terms of total number of bits sent). Figures 3.9 and 3.10 show the results for the
computational cost and Figures 3.11 and 3.12 show the results for the bandwidth usage.
It can be observed that our protocol has a significantly lower computation cost than
the original protocol. This is especially apparent when the probability p is low2.

Regarding the bandwidth usage, two different behaviours can be observed:

• With random movements: Tags change from a cell to another with low probability
(in our protocol). Thus, the number of required messages to update the state of
the readers’ caches is smaller. In this situation our protocol is clearly more efficient
than the original one.

• With semi-directed movements: Tags follow a clear path and change from one
cell to another with a higher probability. In this case, our protocol requires more
messages (especially in the case of using a low p). Thus, in this situation the
original protocol is more efficient for smaller p.

In general, the computational cost is the main concern in RFID identification pro-
tocols and, as we have shown above, our proposal clearly outperforms the original
protocol in this regard for all scenarios. Indeed, if bandwidth usage is not a concern
at all, our proposal with p = 0 is the optimal solution. However, our protocol requires
more bandwidth to improve the computational cost.

Capturing the trade-off between computational cost and bandwidth is not trivial.
Note that the computational cost and the bandwidth usage are measured in different
units. However, it is possible to define a measure in order to compare our proposal with
the original protocol in terms of both computational cost and bandwidth usage.

Definition 9 (Trade-off measure). Let α be a real value in the range [0..1]. Let c and b
be the computational cost and the bandwidth usage, respectively, of the original protocol
for a given configuration3. Let cp and bp be the computational cost and the bandwidth
usage of our protocol using the same configuration and p the probability value. Then,
the trade-off measure that we propose is computed as follows:

d(α, p) =
((cp

c
− 1
)
× 100

)
× α+

((
bp
b
− 1

)
× 100

)
× (1− α)

Intuitively, the proposed trade-off measure d(α, p) represents the performance of
the original protocol with regard to our protocol using p as the probability value and

2Note that when the probability p tends to 1, our protocol tends to resemble the original protocol
in terms of computational cost. However, it is still better in most cases.

3A configuration will be defined by the number of tags in the system, the number of readers and
their distribution, the scenario, etc.
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considering α the weight given to the computational cost and 1−α the weight given to
the bandwidth usage. Note that when α = 0 the bandwidth usage is the only concern,
whilst when α = 1 only the computational cost is considered.

Figures 3.13, 3.14, 3.15, 3.16 and 3.17 depict the performance of the original pro-
tocol with regard to our protocol using the trade-off measure described above. At the
bottom of each figure there is a three-dimensional chart showing the values of d(α, p) for
each α ∈ {0, 0.1, · · · , 0.9, 1} and each p ∈ {0, 0.1, · · · , 0.9, 1}. Also, at the top left side
and at the top right side of the figure there are the projections of the three-dimensional
charts for the x-axis and y-axis, respectively. In the x-axis projection, for each value of
α the values of d(α, p), ∀p ∈ [0, 1], are shown, whilst in the y-axis projection the plot
of the linear functions d(α, p) with α fixed is shown.

It can be observed that our protocol outperforms the previous proposal in most
cases. When the movement of the tags is random, our protocol is always better for all
possible configurations. When the movement of the tags is semi-directed our proposal
is better in 81% of the cases. That leads to a global improvement in more than 90% of
all configurations.

3.3 Conclusions

In this chapter, we have presented an efficient communications protocol for collabora-
tive RFID readers to privately identify RFID tags. With the presented protocol, the
centralised management of tags can be avoided along with bottlenecks and undesired
delays.

Our protocol is not a simple modification of previous proposals but a completely
different approach that clearly improves the efficiency and flexibility of the whole system.
In addition, due to the probabilistic nature of our protocol, the system becomes very
flexible, i.e. the relation between computational cost and communications overhead
can be easily tuned by means of p. The simulation results confirm that our protocol
outperforms previous approaches like [199].

Although the presented protocol is an improvement, there are some open issues
that should be considered in the future, namely (i) study the effect of the number
of neighbours, (ii) propose methods to dynamically vary p so as to adapt it to the
movements of tags, (iii) propose hybrid methods that mix hash-based solutions and
tree-based solutions with collaborative readers, etc.
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Figure 3.13: d(α, p) results for 104 tags and different values of p and α in the scenarios
with corridors and with a random movement pattern. Values below zero indicate
that our protocol is better with respect to the original protocol.
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Figure 3.14: d(α, p) results for 104 tags and different values of p and α in the scenar-
ios with corridors and with a semi-directed movement pattern. Values below zero
indicate that our protocol is better with respect to the original protocol.
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Figure 3.15: d(α, p) results for 104 tags and different values of p and α in the empty
scenario. Values below zero indicate that our protocol is better with respect
to the original protocol.
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Figure 3.16: d(α, p) results for 104 tags and different values of p and α in the scenarios
with random obstacles and with a random movement pattern. Values below zero
indicate that our protocol is better with respect to the original protocol.
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Figure 3.17: d(α, p) results for 104 tags and different values of p and α in the scenarios
with random obstacles and with a semi-directed movement pattern. Values below
zero indicate that our protocol is better with respect to the original protocol.





Chapter 4

Predictive Protocol for Scalable
Identification of RFID Tags through

Collaborative Readers

This chapter presents a natural improvement of previous RFID identification protocols
based on collaborative readers. The described protocol improves the identification process
be predicting the locations of the moving tags.
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Let us consider an RFID system intended for identification and tracking (e.g. track-
ing of goods in a supply chain or luggage control in an airport). In such applications,
several RFID readers are distributed over the system in order to identify tags passing
through the RFID reader positions [199, 83, 210, 43, 15, 52]. By doing so, it is possible
to obtain the trajectory of a tag by concatenating the reader’s positions where the tag
has been identified. Even in applications without tracking purposes, it makes sense to
distribute a set of readers covering strategic points or the whole monitored area [199]
in order to identify the tags moving in it. Supermarkets with several entry/exit doors
or department stores are genuine examples of such applications.

Although there are several applications where many tags should be identified using
some readers, to the best of our knowledge, only two protocols [199, 83] exploiting this
particular property have been proposed so far. The first of them [199] introduced the
idea of using multiple collaborative readers to make the identification process scalable
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whilst maintaining the high level of privacy of the IRHL scheme [119]. Their proposal is
aimed at efficiently identifying tags in applications where each tag must be continuously
monitored while it remains in the system. This implies that readers must cover the whole
system. Under this assumption, tags are constrained to move along neighbour readers1

and therefore, neighbour readers collaborate in order to guarantee efficiency during the
identification process. Efficiency is achieved by means of the so-called reader’s cache,
which is defined as a storage device where a reader saves tag identification data2. The
protocol reduces the size of the readers’ cache by considering that only the closest reader
to some tag and its neighbours must store the identification information of this tag.
By reducing the size of the cache the identification procedure becomes more efficient.
Despite the benefits in terms of computational cost provided by this protocol, assuming
that readers are able to compute their accurate distance to tags is a bit unrealistic.

On the other hand, in the context of using multiple readers (connected to a cen-
tralised back-end), Fouladgar and Afifi [83] point out that, in many applications, tags
are usually queried by the same set of readers. Therefore, they propose to cluster
tags according to the readers that identify them more often. This idea improves the
group-based proposals in the sense that tags are not randomly assigned to groups, but
intelligently clustered according to the spatial location of the readers that identify them.
By doing so, when a reader receives a tag’s response, it first performs a search on the
group of tags that it usually identifies. If it does not succeed, an exhaustive search is
performed over the whole set of tag identifiers. The problem of this proposal is that
tags may have a long life-cycle and move through a wide variety of readers. In this
scenario, the protocol could scale as poorly as previous protocols based on symmetric
key cryptography [119].

We show that the scalability problems of some private protocols can be alleviated
not only distributing readers throughout the system, but also by exploiting the spatial
location of tags. Indeed, a tagged item usually follows a pre-established life-cycle and
then it could be intelligently identified according to its expected spatial location. In
this chapter, we propose an adaptive and distributed architecture aimed at efficiently
identifying RFID tags based on their expected spatial location. Unlike previous propos-
als [199], our architecture is suitable for all possible scenarios and adapts itself to the
type of tag movement. We show empirical results based on synthetic data confirming
the superiority of our architecture with respect to previous proposals [199] and [83].

1Two readers are said to be neighbours if their cover areas are not disjoint.
2This cache can be either an external database securely connected to the reader or a database

internally managed by the reader itself.
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4.1 Trajectory-based RFID identification protocol

In the Solanas et al. proposal [199], the readers’ cache contains identification data of
tags but it lacks information about the expected time at which the tags might next
be identified by a reader or where they were identified in the past. Assuming that it
is possible to approximately know the instant at which a tag will be identified by a
given reader, it is greatly beneficial to use this spatio-temporal information to speed
up the searching process in the readers’ cache. Therefore, we propose to structure the
readers’ cache as an ordered list where the expected time of arrival (ETA) is the ordering
criterion.

Definition 10 (Cache). Given the set of tags T and readers R in the sys-
tem, the cache of a reader R ∈ R consists of a sequence of ordered tuples

C(R) = < t1, ID1, R
ID1
prev, R

ID1
next, Y |N >, · · · ,

, · · · , < tN , IDN , R
IDN
prev , R

IDN
next , Y |N >

where the order is given by the timestamps t1 ≤ · · · ≤ tN . The tag
identifiers IDi ∈ T , ∀ 1 ≤ i ≤ N , and RIDi

prev ∈ R and RIDi
next ∈ R are the

reader that sent the IDi to R and the reader that will receive the IDi from
R, respectively. Y |N is used as a flag to show whether the tag has been
already identified by this reader.

From the above definition it can be observed that our protocol will use the spatial
information about the trajectory of the tags to predict which reader will be the next
reader to receive a given tag. Our protocol will also use the temporal information of
such trajectories to predict when a given tag will be read in the future by the next
reader. Table 4.1 is an example of the cache of a reader. In this example, the reader
R512 expects to receive the tag T90876534 from reader R1012 at time 2011-07-28 11:31:38,
and will forward the identification information to the next reader R201. Also, it can be
seen that the tag has not been identified by the reader yet.

By using this ordered cache, when a tag response arrives at a given timestamp t, a
reader is able to optimise the searching process in its cache by first considering the tags
that it expects to identify at a timestamp t′ close to t. Note that if the ETA is accurate,
the identification of tags might be very fast. The better the prediction, the faster the
identification process. In the worst case the computational cost is O(n), where n is the
number of identifiers in the cache of the reader.
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Cache of Reader 512
Previous Next First

ETA Tag ID Reader Reader Time
2011-07-28 11:31:38 90876534 1012 201 Yes
2011-07-28 11:41:33 10311299 1011 1201 No

· · · · · · · · · · · · · · ·
2011-07-30 22:01:08 21134211 1012 201 No

Table 4.1: Example of the cache of a reader.

4.1.1 Trajectory prediction algorithms

We propose to use trajectory predictors extensively so as to be able to inform readers
about which tags they will receive and when, before they actually receive them. How-
ever, when this prediction fails, we propose to use other predictors to find the reader
that might have the information about a tag. These latter predictors consider the move-
ment of all tags globally, i.e. they look for global trends instead of predicting the moves
of a single tag as does by the former predictors.

In general, a trajectory is understood as a timely ordered set of consecutive points
(P) defined in an n-dimensional space (S). However, due to the fact that we can only
control the location of the tags when they are detected by a reader, we define our
concept of trajectory as follows:

Definition 11 (Trajectory). Given a set of readers R and tags T . The
trajectory of a tag Ti ∈ T is defined as a sequence

Si =< t1, R1 >,< t2, R2 >, · · · , < ts(i), Rs(i) >

where s(i) is the size of the sequence, t1 < t2 < · · · < ts(i) are timestamps
and, Rj ∈ R ∀1 ≤ j ≤ s(i) are the readers that identified the tag Ti at the
timestamp tj.

When a tag arrives at the cover area of a reader, the reader tries to identify it by
applying the already explained IRHL protocol. During the identification process two
situations could arise:

1. Identification success: The reader finds the identification information of the
tag in its cache and can identify it. Then it has to decide to which reader should
this information be forwarded (see the example of Figure 4.1).
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Figure 4.1: Illustration of the identification success of the tag Ti by reader A. After suc-
cessfully identifying Ti, the reader A applies a Next Reader Predictor (NRP) to predict
the next reader (in this case, reader A decides that reader B is the best candidate) and
sends the Ti identification information to reader B. The reader B stores the information
about Ti in its cache so as to be able to identify it (if necessary).

2. Identification failure: The cache of the reader does not contain the identifica-
tion information of the tag and the reader cannot identify it. The reader has to
decide which other reader to ask for help (see the example of Figure 4.2).

In the first case (identification success), after properly identifying a tag, the reader will
proceed by using a Next Reader Predictor (NRP) algorithm to determine which reader
will be the next one to which the tag will move. Once this next reader is determined,
the current reader sends the identification information of the tag to that reader. An
NRP can be defined as follows:

Definition 12 (Next Reader Predictor (NRP)). Let Ti be a tag of the system
and let Si =< t1, R1 >,< t2, R2 >, · · · , < tj , Rj > be its trajectory. An
NRP is a polynomial-time algorithm (let us call it Anext) that, on input Ti
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and Si, outputs the pair < tj+1, Rj+1 >.

Anext(Ti, Si) −→< tj+1, Rj+1 >

This output pair means that it is expected that the tag Ti will be identified
at time tj+1 > tj by the reader Rj+1.

Note that the result of the NRP is correct only with a probability that highly
depends on the utilised algorithm and the degree of regularity of the movement of
tags3. Thus, if the prediction is wrong, the reader which is currently identifying the
tag Ti will forward the identification information to a wrong reader. As a consequence,
when that tag reaches the next reader, the latter will not be able to identify the tag
(because the identification information will not be in its cache) and will need the help
of other readers to do so (this is the second case enumerated above).

In the second case (Identification failure), when a reader cannot identify a tag, it
proceeds by using a Previous Reader Predictor (PRP) algorithm to identify the reader
that might have identified the tag previously and might have the identification infor-
mation of the tag. A PRP can be defined as follows:

Definition 13 (Previous Reader Predictor (PRP)). Let T = {T1, · · · , TN}
be the set of tags in the system and let S = {S1, · · · , SN} be the set of
trajectories of the tags in T until a given time t. Let T R ⊂ T be the subset
of tags known by reader R and let SR ⊂ S be the trajectories of the subset
of tags known by reader R. A PRP is a polynomial-time algorithm (let us
call it Aprev) that, on input a reader R and a set of trajectories of tags SR,
outputs the sequence of k readers R1, R2, · · · , Rk that are candidates to be
the previous reader that identified a tag:

Aprev(R,SR) −→< R1, R2, · · · , Rk >

Remark 1. The order of the sequence of candidate readers depends on the
specific implementation of the predictor. However, the following condition
must hold:

P (success|R1) ≥ P (success|R2) ≥ · · · ≥ P (success|Rk)

This means that R1 has more chances of being the actual previous reader
than R2, etc.

3It is apparent that in a chaotic system where no regularities exist, the prediction of the next move
of a tag would be extremely inefficient.
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Figure 4.2: Illustration of the identification failure. Reader C tries to identify Ti but it
fails because it has not got the information in its cache. It uses a PRP to decide which
reader to ask for help (in this case C asks A).

Note that we have defined the theoretical concept of NRP and PRP algorithms. How-
ever, the specific implementation of these algorithms would highly affect the perfor-
mance of the whole system. Further below, we will give details on the implementations
that we have used for our experimental analysis.

4.1.2 Our protocol

We define our protocol as a distributed algorithm in the context of a set of collaborative
readers R that share identification information on a number of tags T . For the sake of
completeness, in addition to R, we consider a special reader OR that acts as an oracle,
i.e. it has the same role of classical back-ends that have the information of all tags in
the system. OR can identify any tag in T , hence no false negative identifications occur.
However, in our collaborative context, the oracle should be understood as the “last
resort” to identify a tag if all the other mechanisms fail4, because the computational

4Note that this situation might happen rarely and probably it would be caused by a communication
failure amongst the collaborative readers or by an active attack.
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Figure 4.3: Conceptual logical flow of the protocol.

cost associated to the identification of tags by the oracle is very high.
Algorithm 1 shows a pseudocode description of our protocol and Figure 4.3 depicts

the logical flow of the proposal. Our protocol works as follows. The reader R, that
receives an identification message from an unidentified tag T at time t, tries to identify
it by following the Improved Randomised Hash Lock Scheme (IRHL) [119, 120] but using
the identification information stored in its own cache only (lines 1 to 10 in Algorithm 1)).
In order to perform this identification efficiently, the reader uses the cache structure
described above. First, it tries to identify T as one of the tags that were expected to
arrive at time t. If the tag is not identified amongst these candidate tags, the reader
tries with tags that were expected to arrive a bit later at time t+ 1 and a bit earlier at
time t−1, and so on. Searching in this way, if the ETA of T was properly predicted and
forwarded, T is identified almost instantly. However, if the prediction was wrong, the
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Algorithm 1 Main protocol
1: Require: (i) A tag T to be identified by a reader R at time t; (ii) The set of tags’

trajectories SR known by R; (iii) The cache of reader R, C(R).

- - Try to identify T using the local cache
2: for all t′ ∈ {t, t+ 1, t− 1, t+ 2, t− 2, · · · } do
3: for all Ti ∈ C(R) with ETA = t′ do
4: if T is identified as Ti then
5: if Ti is a “first time” tag then
6: Call New_Tag (R, Ti, t, RTiprev, Si)
7: end if
8: Return: (Tag identified correctly);
9: end if

10: end for
11: end for

- - Try to identify the tag with the help of other readers
12: for all R′ ∈< R1, R2, · · · , Rk >←− Aprev(R,SR) do
13: Call Help_Identify (T ,R′)
14: if R′ identifies T then
15: R receives < t′, Ti, RTiprev, R

Ti
next > from R′.

16: Call New_Tag (R, Ti, t, R′ and, Si).
17: Return: (Tag identified correctly);
18: end if
19: end for

- - (last resort) Ask the Oracle
20: if OR identifies T then
21: Call NewTag (R, T , t, OR, ∅).
22: Return: (Tag identified correctly);
23: end if
24: Return: Invalid tag T found

reader R might need to search over all its cache. If T is identified, R checks whether it
is the first time that this tag enters its interrogation zone, i.e. it is a “first time” tag. If
it is, it calls the procedure New_Tag(R, Ti, t, RTiprev, Si) and the identification finishes.
If the tag is not a “first time” tag, the identification procedure simply finishes.

If the identification information of T was not properly forwarded to R5, it will search
over all its cache and will not be able to identify T . In this situation, it has to ask for
help to the other collaborative readers that might have the information it needs (lines

5Note that this might happen due to a wrong prediction of the next reader by the previous reader.
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11 to 18 in Algorithm 1). To do so, R calls the PRP algorithm Aprev(R,S) so as to
obtain a list of readers that may have information about T . For each reader R′ in the
list returned by Aprev, the procedure Help_Identify (T ,R′) is called. If this procedure
succeeds in identifying T , the collaborative reader that succeeds sends the tuple of its
cache that contains the information about T , i.e. the tuple < t′, Ti, RTiprev, R

T i
next >) is

sent to R. By using the information in this tuple, the identification process correctly
finishes after calling the procedure New_Tag(R, Ti, t, R′, Si).

Finally, if no reader R′ can identify T , R asks the oracle OR (lines 19 - 23 in
Algorithm 1). If OR cannot identify T , the latter can be considered an illegitimate
tag6. Otherwise, R finishes successfully the identification process by calling procedure
New_Tag (R, T , t, OR, ∅).

Algorithm 2 New_Tag
1: Require: (i) A reader R that has identified a tag Ti at time t; (ii) The reader
Riprev; (iii) The trajectory Si of Ti.

2: R asks RTiprev to remove Ti from its cache;
3: R predicts the next reader and ETA < ti, R

Ti
next >= Anext(Ti, Si);

4: R asks RTinext to insert the record < ti, Ti, R, null, Y > in its cache;
5: R removes the record about Ti from C(R) (if it exists);
6: R inserts the record < t, Ti, R

Ti
prev, R

Ti
next, N > into C(R);

7: R adds < t,R > to Ti’s trajectory (Si);

The main protocol described in Algorithm 1 uses two procedures (New_Tag and
Help_Identify) to update the state of the caches of other collaborative readers and to
identify tags for which the identifying reader has no information.

The New_Tag procedure, described in Algorithm 2, is called when a reader R
determines that a newly identified tag, Ti, has entered its interrogation zone for the
first time, i.e. it is a “First time” tag, and thus, Ti’s trajectory must be updated. In
this case, R sends a message to the previous reader RTiprev that identified Ti so as to let
it remove the information it has about Ti7 (note that when RTipre = OR this message is
not sent). Then, R uses an NRP to determine the next reader that will be visited by Ti
and sends a message to it to let it insert the tuple < ti, Ti, R, null, Y > in its cache (this
way, when the tag reaches this reader, it will be able to identify it efficiently). Finally,
the record corresponding to Ti in C(R) is updated with proper information about the
next reader < t, Ti, R

Ti
prev, R

Ti
next, N >.

6In this case, the proper actions are to be taken, namely raise an alarm, locate and eliminate the
tag, etc.

7This information is no longer necessary and removing it from the cache speeds up the identification
procedure.



4.1. Trajectory-based RFID identification protocol 69

Algorithm 3 Help_Identify
1: Require: T a tag to be identified by a reader R;
2: Determine told the oldest timestamp in C(R);
3: for all t′ ∈ {told, told + 1, told + 2 · · · } do
4: for all Ti ∈ C(R) with ETA = t′ do
5: if T is identified as Ti then
6: R asks Riprev to remove the information of Ti from its cache;
7: Return: < t′, Ti, RTiprev, R

Ti
next >

8: end if
9: end for

10: end for
11: Return: < null > (Tag not identified)

The Help_Identify procedure, described in Algorithm 3, is called when a reader R
cannot identify a tag with the information stored in its cache. This procedure is executed
by the readers that collaborate with R. Due to the fact that these collaborative readers
might have seen the unknown tag quite in the past, they start searching tuples in their
caches whose timestamps are old. If a collaborative reader R′ identifies T as Ti it sends a
message to RTiprev in order to let it remove the information on Ti from its cache. Finally,
R′ returns the tuple about Ti stored in its cache.

4.1.3 Practical implementation of the predictors

Previously, we have theoretically defined the concepts of Next Reader Predictor (NRP)
and Previous Reader Predictor (PRP). Below, we propose practical implementations
for each of these predictors.

4.1.3.1 Next reader predictor

We propose to use a location prediction algorithm based on a Markov model [204]. A
Markov-based predictor of order k, O(k), is defined over the sequence of the last k
locations of a given moving entity. Let L = `1, · · · , `n be the location history of a given
entity and let L(i, j) = `i, · · · , `j be a subsequence of L. Let Xi be the random variable
that represents a location at time t. Then, the Markov assumption is that:

Pr(Xn+1 = x|X1 = `1, · · · , Xn = `n) =

Pr(Xn+1 = x|Xn−k+1 = `n−k+1, · · · , Xn = `n) (4.1)

And that for every i ∈ {1, 2, · · · , n− k}:

Pr(Xn+1 = x|Xn−k+1 = `n−k+1, · · · , Xn = `n) =
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Pr(Xi+k = x|Xi−k = `n−k+1, · · · , Xi+k−1 = `n) (4.2)

Simply stated, Equation 4.1 says that the probability of being in a given location
depends on the previous k locations only, whilst Equation 4.2 says that this probability
is time independent. Therefore, this probability can be represented by a transition
matrix M labelled with all possible sequences of locations of size k:

Pr(Xn+1 = x|X1 = `1, · · · , Xn = `n) =

M(L(n− k + 1, n), L(n− k + 1, n)||x) (4.3)

And the value of M(a, b) may be estimated by

M(a, b) =
N(a, L)

N(b, L)
(4.4)

Where N(s1, s2) is the number of times the subsequence s1 occurs in the sequence
s2.

In our protocol, locations are represented by the readers R and a next reader pre-
dictor (NRP) is only used by readers R once they realise that a tag T is in their
interrogation zone. Thus, the last location of T is the current reader R, i.e. `n = R.
Therefore, we believe that a reader could be able to implement a Markov-based predic-
tor of order 1 or 2 using a reasonably small amount of memory. In addition, counting
the number of times that a tag is identified by a reader after having been identified
by another reader can be easily done when calling the New_Tag procedure described
in Algorithm 2. Our Markov-based predictor is computationally efficient. It has a
logarithmic computational cost with respect to the number of readers R.

Regarding the time prediction, we use a very simple approach. Let tm be the average
time in which a tag T is identified by two consecutive readers. Let t be the current time
in which T is identified by a reader. We estimate that the next reader will identify T
at time t+ tm. Note that the readers store, share and update tm. To update the value
of tm, the reader applies the following equation:

tm =
tm × (c− 1) + t− tlast

c
,

where c is the number of times that the tag has been identified and tlast is the last time
in which that tag was identified.

4.1.3.2 Previous reader predictor

We propose the use of an heuristic to implement the previous reader predictor (Aprev).
In a nutshell, the proposed predictor works as follows: When a reader Ri identifies a
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tag, it increments a counter G(Ri, Rj), where Rj is the last reader that identified that
tag. By doing so, when Aprev(Ri,SRi) is called, it outputs the sequence,

R1, R2, · · · , Rk

such that
G(Ri, R1) ≥ G(Ri, R2) ≥ · · · ≥ G(Ri, Rk).

The computational cost of Aprev is logarithmic with respect to the number of readers
R. Note that there is no need for sorting the output list every time the algorithm is
called, i.e. this might lead to a computational complexity O(|A| log |A|). On the
contrary, the list could be stored already sorted and simply updated after increasing
the value of G(Ri, Rj) for any pair of readers Ri and Rj .

Note that the PRP is essentially a “global” predictor in the sense that it is based
on the information of the trajectories of multiple tags. Consequently, it can be seen as
a trend analyser (e.g. if most of the tags that are identified by a reader Ry move to
a reader Rx, when the reader Rx uses the PRP, the first result will be Ry). On the
contrary, the NRP previously described is essentially “local” in the sense that it only
depends on the information of a single tag.

4.2 Experimental results and evaluation

We split this experimental section in two subsections. The first is devoted to comparing
our proposal with both the Solanas et al. [199] and the Fouladgar and Afifi [83] proposals.
The second subsection does not consider the Solanas et al. [199] proposal anymore
because it was designed over assumptions quite different from ours. In turn, we show
in this part of the experimental section how a good implementation of the next reader
predictor algorithm (Anext) improves the efficiency of the identification process.

4.2.1 Experiments considering the Solanas et al. proposal

As we explain above, the Solanas et al. [199] proposal considers a scenario where tags are
continuously monitored by readers. To do so, readers must have a large interrogation
field so as to cover the whole scenario. Consequently, a tag is likely to be identified
several consecutive times by the same reader. Under this assumption, a next reader
predictor algorithm (Anext) does not make sense. Note that Anext(Ti, Si) will output,
with high probability, the last reader of the trajectory Si because that reader is likely to
identify again Ti in the next slot of time. Then, in this first part of the experiments, we
remove Anext from our protocol and we recall this variant as Partial-predictive. In turn,
our proposal using both predictors is simply called predictive and it will be evaluated
in the second half of the experimental section.
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Figure 4.4: Open area completely covered by 96 readers

4.2.1.1 Scenarios

With the aim to overcome the limitation of obtaining real datasets of tag movement
in a fine-grained fashion as required in [199], we define two types of tag movements
and three different scenarios with which we evaluate and compare our partial-predictive
proposals with [199] and [83].

The first scenario is an open area (cf. Figure 4.4) where tags can freely move. The
area is completely covered by 96 readers uniformly distributed over the whole area. By
doing so, we meet the constraints of the Solanas et al. protocol w.r.t. the distribution
of readers [199].

The second and third scenarios are representations of the seven bridges of Königs-
berg8. In these scenarios, people’s movements are constrained by the river and thus,
they can only use bridges in order to move to different sides of the city. Like people, we
assume that tags should not be on the river and we design the second and third scenar-
ios using two different distributions of readers. The second scenario (cf. Figure 4.5) is a
representation of the Königsberg city where 14 readers cover the entire city. Note that
this scenario also meets the constraints of the Solanas et al. protocol w.r.t. the reader

8The seven bridges of Königsberg is a notable historical problem in mathematics. In 1735, Leonhard
Euler proved that no Eulerian path existed for the Königsberg city. This result laid the foundations of
graph theory.
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Figure 4.5: Königsberg city representation where 14 readers cover the entire city. Black
blocks represent the river water and the seven bridges are represented by the square
spaces between black blocks.

Figure 4.6: Königsberg city representation where 14 readers are monitoring the two
ends of each bridge. Black blocks represent the river water and the seven bridges are
represented by the square spaces between black blocks.

distribution [199]. Since covering a city by 14 RFID readers can be not practical, we
design a third scenario (cf. Figure 4.6) that only differs from the previous one in the
reading ranges and positions of the readers. Notice that in the second scenario a tag
can be monitored in every part of the city, while in the third scenario a tag can only
be read when passing through a bridge. However, due to the movement constraints in
the city and the strategic position of the readers, it is easy to know in which side of the
city each tag is located. This is a good example of how, by cleverly placing readers, it
is possible to obtain accurate trajectories of tags.

4.2.1.2 Movement of tags

In this stage of the experiments, we should generate fine-grained moving data as required
by [199]. To do so, we consider that tags move according to two types of movement:

• Random movement. At each step, a tag chooses a random direction and moves
in this direction.
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• Semi-directed movement. In this movement, a tag always has a target point.
Once the tag reaches its target, it changes the target point to a new random
and valid point in the scenario. Then, at each step, with probability 0.5 the tag
chooses whether to move randomly or move in the target’s direction.

Between both movements, semi-directed movement can be considered closer to real
movement patterns of people. However, unpredictable movement patterns can be only
evaluated using a random movement.

4.2.1.3 Simulations

In order to compare our partial-predictive proposal against the two previous propos-
als [199, 83], we perform simulations on the three scenarios defined above. For each
scenario, different settings defined by the number of tags in the system and the type of
movement are used. A simulation process consists of 104 tags moving according to some
pattern (random or semi-directed) in one of the three scenarios. For each simulation
process, tags are identified using four different methods:

1. The Fouladgar et al. method [83] assuming that each tag is in the cache of only
one reader. We refer to this method as Fouladgar 1-1.

2. The Fouladgar et al. method [83] assuming that each tag may be in the cache of
several readers. The authors propose to store the tag data in the cache of those
readers that may read it most often. As this is not possible for the two data
sets considered in this work, we make the assumption that a tag will be in the
cache of the readers that have identified it previously. We refer to this method as
Fouladgar 1-M.

3. The Solanas et al. method [199]. We refer to this method as Solanas.

4. The previously mentioned partial-predictive proposal.

In order to give statistically sound results, each simulation process is executed 30
times and the average number of cryptographic operations performed by each method
is computed. Figure 4.7 and Figure 4.8 show the experimental results obtained for
104 tags moving according to the random movement and the semi-directed movement,
respectively. In both figures, it can be observed that the Partial-predictive proposal
improves on the previous ones by more than 50%. This means that, for any scenario
and any type of movement, our partial-predictive proposal needs, in the worst case, half
the number of cryptographic operations executed by previous proposals [199, 83].

The partial-predictive proposal performs better than previous ones mainly due to
three reasons: (i) after the identification of a tag, the reader saves in its own cache the
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Figure 4.7: Percentage of improvement of the partial-predictive proposal w.r.t. previous
ones considering random movement and 104 tags
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Figure 4.8: Percentage of improvement of the partial-predictive proposal w.r.t. previous
ones considering semi-directed movement and 104 tags

tag’s data in order to identify it faster in the future, (ii) the size of the caches of readers
is minimised in such a way that two readers never share tag information, (iii) and when
a reader can not identify a tag using its own cache, it is able to heuristically (Aprev)
find another reader that could identify this tag.
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4.2.2 Experiments considering the Anext algorithms

In the second half of the experimental section, we consider coarse-grained datasets of
tag movement (data sets of trajectories), in the style of tracking data recorded by RFID
systems. A data set of trajectories contains a historical log with all the identification
events produced by readers during the identification of tagged objects in a given sce-
nario. Thus, with these data sets, it is possible to determine the precise moment in
which a tagged object was identified by a given reader in an exact location. By us-
ing these data sets of trajectories, whether real or synthetic, we are able to measure
the performance of our proposal in terms of computational cost and bandwidth usage,
and compare it to others without the need for an expensive and very time consuming
implementation of real prototypes.

However, obtaining real data sets of trajectories of RFID tagged objects moving
through, for example, supply chains is very difficult, i.e. these data are generally
kept by private companies that are quite reluctant to share them. Hence, the use of
synthetic data obtained by means of simulation is a common practice [92] [93] [94].
However, a synthetic data set might fall short of capturing the real complexity of the
motion of objects. With the aim to lessen this problem and in order to perform a
comprehensive comparison of our proposal with previous ones, we use two different
data sets of trajectories:

1. A synthetic data set generated by simulating the movement of tagged objects in
supply chains. This data set has been generated by using techniques proposed in
previous articles [92] [93] [94], which deal with moving objects in supply chains.

2. A real data set consisting of a historical log of the movement of wireless cards
through several access points at Dartmouth College [132]. This real data set of
trajectories captures the movement of students in the Dartmouth College when
they connect to the wireless access points of the campus.

4.2.2.1 Generating the synthetic data set

As stated above, we generate a synthetic data set of moving objects in supply chains.
Similarly to [93], we consider several distribution centres or factories that may exchange
tagged products/items in both directions by means of input/output gates (controlled
by RFID readers). Once a distribution centre has M items in any of its output gates,
it sends these items to another randomly selected distribution centre. Upon reception
of a set of items by a distribution centre, these items are processed according to the
distribution centre policy. Like in previous models [92] [93] [94], the distribution centre
policy is defined by a graph. Locations where items arrive and depart are the nodes of
the graph, whilst the edges represent the possibility of moving between locations. In
particular, we define a random graph for each distribution centre and random Poisson
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distributions to model the departure of items in each location. By doing so, we simulate
that items move in small groups or individually inside each distribution centre whilst
they move in large groups between distribution centres. Note that this kind of movement
is similar to the one given in [139] where two types of data are considered: (i) groups
of items (GData) and (ii) single items (IData).

Similarly to [92], we define five distribution centres and twenty locations in each
of them. For each distribution centre we define a random graph using an Erdős-Rényi
model G(n, p) where n = 20 and p = 0.5. Also, we assign to each location a Poisson
distribution P (λ) where λ = 10. Finally, the minimum number of items that are sent
as a group between distribution centres is defined as M = 100.

In order to define the movement pattern of items we consider that they have different
probabilities to departure towards different locations. For each out-edge of the graph,
each item has a probability of taking this edge to leave. In our experiments, we have
defined that for every node having n out-edges, the sequence of probability values
assigned to these out-edges is a permutation of the sequence {12 , 1

22
, · · · , 1

2n−1 ,
1

2n−1 }
(note that any other probability distribution could be defined.) Finally, considering all
these settings, we generate a synthetic data set with 105 trajectories having an average
length of 200 points.

4.2.2.2 Generating the real data set

Dartmouth College has 566 Cisco 802.11b access points installed to cover most of its
campus. The college has about 190 buildings with 115 subnets so that clients roaming
between buildings can change their IP addresses. This roaming information is recorded
in different files for different clients by using syslog events [132]. In total, more than
14, 000 trajectories collected over almost 2 years can be found in this data set.

For our experiments, we have selected the shortest 10, 000 trajectories of this data
set. This subset of trajectories is created by parsing all the files having less than 46

Kb. We have selected the shortest trajectories because longer trajectories have useless,
larger gaps in the data, generally caused by power failures, access points failures, or
long periods of time in which clients were not in the campus. Note that those big
gaps should not appear in data sets of items moving through supply chains because, in
this scenario, items cannot be considered lost for a long time. The trajectories of the
resulting data set have an average length of 400 points.

4.2.2.3 Implementing predictors

In Section 4.1.3, we have defined an effective algorithm to predict the next location of
a moving object based on a Markov model. Also, we have shown that it is possible to
give an estimation of the time when an object should visit the next location.
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In order to provide a better evaluation of our proposal, we have run experiments
using two different predictors:

1. A Markov-based predictor: The predictor described in Section 4.1.3 used to es-
timate both the next location and the time when the object should visit that
location.

2. An Oracle predictor: A predictor that always correctly guesses the next location
and the time when the object should visit that location.

It should be emphasised that the Oracle predictor is only possible because we know
in advance the trajectories of the data sets, otherwise it is not possible to create it. The
Oracle predictor can be understood as the optimal predictor, i.e. an upper bound in
prediction accuracy.

The Markov-based predictor that we have implemented for our experiments guesses
correctly the next location and ETA of tags 41% of the times with synthetic data, and
67% of the times with real data. The Oracle predictor has 100% of success for both
data sets.

As it has previously been stated, the performance of our protocol in terms of compu-
tational cost and bandwidth usage strongly depends on the accuracy of the predictors.
Although the obtained results outperform all previous proposals, there is still room for
improvement (e.g. by developing better predictors).

4.2.2.4 Performance of protocols

We will compare the performance of the following proposals:

1. The previously mentioned Fouladgar 1-1, Fouladgar 1-M, and Partial-
predictive proposals.

2. Our proposal using a Markov-based predictor. We refer to this proposal as Pre-
dictive (Markov).

3. Our proposal using an Oracle predictor. We refer to this proposal as Predictive
(Oracle).

From a scalability point of view, the number of cryptographic operations performed
on the server side is the main concern. Consequently, most of the hash-based protocols
are not considered scalable. However, RFID protocols based on collaboration between
readers have less computational cost than hash-based protocols but may require more
bandwidth. Therefore, for all the studied protocols we compute the number of crypto-
graphic operations and, also, the number of messages sent between readers.
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With the aim to study both the computational cost and the bandwidth usage simul-
taneously, we have defined a measure that for every protocol outputs the percentage of
closeness of the protocol to the optimal case; the higher (closer) the better.

Definition 14 (Trade-off measure). Let P be the set of protocols under evaluation. Let
α be a real value in the range [0..1]. Let Pc and Pb be the number of cryptographic
operations and the number of sent messages of a given protocol P ∈ P. Let minc =

min(P ic), ∀ P i ∈ P, minb = min(P ib ), ∀ P i ∈ P, maxc = max(P ic), ∀ P i ∈ P, and
maxb = max(P ic), ∀ P i ∈ P. Then, the trade-off measure that we propose is computed
as follows:

d(α, P,P) =

(
maxc − Pc
maxc −minc

× 100

)
× α+

(
maxb − Pb
maxb −minb

× 100

)
× (1− α)

Using this measure, it is possible to globally analyse the performance of all protocols
at the same time. In addition, thanks to the use of α, it is simple to weight the
importance of either the computational cost or the bandwidth usage. Thus, it can be
easily observed which of the analysed protocols performs best in given conditions.

4.2.2.5 Experiments with the synthetic data set

Figure 4.9 depicts the number of cryptographic operations performed by each protocol
over the synthetic data set. In the beginning of the simulation (in the start-up phase)
the “Predictive (Oracle)” and the “Predictive (Markov)” have a performance similar
to the “Partial predictive” protocol. However, after learning the movement pattern of
items, they immediately outperform the “Partial predictive” protocol. It can also be
observed that the predictive protocols and the “Partial predictive” protocol are clearly
superior to the “Fouladgar 1-1” and the “Fouladgar 1-M”, thus confirming the results
presented in the first part of the experimental section. Figure 4.10 shows the average
number of cryptographic operations per identification. From this figure, it is clear that
our new proposals outperform the previous ones in terms of computational cost and,
by extension, they improve scalability also.

Figure 4.11 shows the number of messages sent by readers in the studied protocols
over the same data set, and Figure 4.12 depicts the number of those messages on
average. It can be observed in both figures that the “Fouladgar 1-M” method sends
fewer messages because it replicates the identification information of tags in several
readers, at the cost of a poor scalability. It is also clear that our new proposals send
a very similar number of messages to the “Fouladgar 1-M” proposal but they perform
significantly better in terms of scalability.

Using the trade-off measure described in Definition 14 we have compared all the
protocols considering different values of α (cf. Figure 4.13). It is apparent that the
protocol presented in this chapter (in its two variants) is the best for almost all values
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Figure 4.9: Average number of cryptographic operations performed by each protocol
during the complete simulation with the synthetic data set (in red). The black line
represents the moving average of those values in subsets of 100 elements. The time axis
represents simulation steps.
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Figure 4.10: Average number of cryptographic operations per identification for the
simulation with the synthetic data set. (The lower the better)

of α. Only in the region of α values very close to 0 (meaning that only the number
of messages counts) our proposal is not the best. Hence, we can conclude that our
proposal is better than previous proposals for the analysed synthetic data set.

4.2.2.6 Experiments with the real data set

In the case of the real data set, we consider the same measures described above, i.e.
the number of cryptographic operations, the number of sent messages, and the trade-off
measure. Figure 4.14 and Figure 4.16 show the number of cryptographic operations
and the number of sent messages for each protocol. Figure 4.15 and Figure 4.17 show
those values on average. Finally, Figure 4.18 depicts the closeness of all protocols to
the optimal case by using the trade-off measure described in Definition 14.

The results are very similar to the ones obtained with synthetic data. Again, our
proposal outperforms all previous proposals. Note that the different shape of Figures
8 and 10 with respect to Figures 13 and 15 is due to the very nature of the analysed
data (i.e. synthetic vs. real).

4.3 Conclusions

In this chapter, we have presented a novel protocol that allows efficient identification
of RFID tags by means of a set of collaborative readers. Our proposal uses location
and time of arrival predictors to improve the efficiency of the widely accepted IRHL
scheme. We have shown that our protocol outperforms previous proposals in terms of
scalability whilst guaranteeing the same level of privacy and security.
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Figure 4.11: Average number of messages sent by each protocol during the complete
simulation with the synthetic data set (in red). The black line represents the moving
average of those values in subsets of 100 elements. The time axis represents simulation
steps.
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Figure 4.12: Average number of messages sent per identification with the synthetic data
set
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Figure 4.13: The trade-off measure for each protocol and different values of α =

{0, 0.1, 0.2, · · · , 1.0} for the synthetic data set. The higher the better. (Note that
the colours assigned to the protocols do not coincide with the colours of Figure 4.12).
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Figure 4.14: Average number of cryptographic operations performed by each protocol
during the complete simulation with the real data set (in red). The black line represents
the moving average of those values in subsets of 1000 elements. The time scale is in
milliseconds.
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From the experimental results obtained, we can conclude that our proposal could
be comparable to highly scalable protocols like the tree-based protocols. However, we
do not sacrifice any privacy to achieve this goal.

Usually, algorithms aimed at location prediction work well in some scenarios, but
their performance decreases in others. Although we have provided some practical imple-
mentations for the predictors, the definition of our protocol is flexible enough to accept
the use of any location predictor. Due to the fact that the efficiency of our proposal
highly depends on the accuracy of the predictors, in the future we plan to study and
compare a variety of predictors in different scenarios.
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Figure 4.15: Average number of cryptographic operations per identification with the
real data set
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Figure 4.16: Average number of messages sent by each protocol during the complete
simulation with the real data set (in red). The black line represents the moving average
of those values in subsets of 1000 elements. The time scale is in milliseconds.
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Figure 4.17: Average number of messages sent per identification with the real data set
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Chapter 5

The Poulidor Distance-bounding
Protocol

This chapter describes a novel distance-bounding protocol resistant to both mafia and
distance fraud. The experimental results show that this new proposal strikes a good
balance of memory usage, mafia fraud resistance, and distance fraud resistance.
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The most widespread and low-cost tags are passive, meaning that they do not have
their own power source, and are supplied by the electromagnetic field of a reader.
Although the capacities of such tags are quite limited, some of them benefit from cryp-
tographic building blocks and secure authentication protocols. Nevertheless, Desmedt,
Goutier and Bengio [65] presented in 1987, an attack that defeated any authentication
protocol. In this attack, called mafia fraud, the adversary passes through the authenti-
cation process by simply relaying the messages between a legitimate reader (the verifier)
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and a legitimate tag (the prover). Thus she does not need to modify or decrypt any
exchanged data. Later in 1993, Brands and Chaum [44] proposed a countermeasure
that prevents such attack by estimating the distance between the reader and the tag to
be authenticated: the distance-bounding protocol. They also introduced in [44] a new
kind of attack, named distance fraud, where a dishonest prover claims to be closer to
the verifier than she really is.

Since then, many distance-bounding protocols have been proposed to thwart these
attacks. In 2005, Hancke and Kuhn [100] proposed the first distance-bounding protocol
dedicated for RFID. The protocol is considered simple in the sense that it only requires
an initial slow phase followed by a fast phase in order to perform both authentication
and distance checking. Unfortunately, the adversary success probability regarding mafia
and distance frauds is (3/4)n while one may expect (1/2)n. As a result, many other
protocols [29, 126, 128, 165, 189, 216] have been proposed attempting to improve the
Hancke and Kuhn proposal.

Amongst them, to the best of our knowledge, the Kim and Avoine protocol [126]
and the Avoine and Tchamkerten protocol [29] have the best resistance considering
only mafia fraud. However, the Kim and Avoine protocol [126] severely sacrifices the
distance fraud security, whereas the Avoine and Tchamkerten proposal [29] requires an
exponential amount of memory (2n+1− 2 in its standard configuration) to achieve such
a high mafia fraud resistance. Neither the Hancke and Kuhn protocol nor the two latter
protocols achieve a good balance between memory, mafia fraud resistance and distance
fraud resistance.

In this chapter, we perform a detailed analysis of the mafia and distance fraud
resistance of the protocols [29] and [126]. Then, we introduce the concept of distance-
bounding protocols based on graphs, and we propose a new distance-bounding protocol
based on a particular type of graph. Our goal is not to provide the best protocol in
terms of mafia fraud or distance fraud, but to design a protocol that ensures a good
trade-off between these concerns, while still using a linear amount of memory with
respect to the number of rounds. This means that our protocol is never the best one
when considering only one property, but is a good option when considering the three
properties altogether. This is why we name our protocol Poulidor after a famous French
bicycle racer known as The Eternal Second : never the best in any race, but definitively
the best on average.

5.1 Previous proposals

In terms of efficiency and resource consumption, our proposal is comparable to the
Hancke and Kuhn [100] and Kim and Avoine [126] protocols. Therefore, we explain
below those two proposals. We also detail the Avoine and Tchamkerten protocol [29]
because our aim is to be as resilient as this protocol to mafia and distance frauds.
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5.1.1 Hancke and Kuhn’s protocol

Hancke and Kuhn’s protocol (HKP) [100], depicted in Figure 5.1, is a key-reference
protocol in terms of distance bounding devoted to RFID systems. HKP is a simple and
fast protocol, but it suffers from a high adversary success probability.

5.1.1.1 Initialisation

The prover (P ) and the verifier (V ) share a secret x and agree on: (i) a security
parameter n, (ii) a public hash function H, whose output size is 2n, and (iii) a certain
timing bound ∆tmax.

5.1.1.2 Protocol

HKP consists of two phases: a slow one followed by a fast one. During the slow phase
V generates a random nonce NV and sends it to P . Reciprocally, P generates NP and
sends it to V . Both V and P compute H2n := H(x,NP , NV ). In what follows, Hi

(1 ≤ i ≤ 2n) denotes the i-th bit of H2n, and Hi . . . Hj (1 ≤ i < j ≤ 2n) denotes the
concatenation of the bits from Hi to Hj . Then V and P split H2n into two registers
of length n: R0 := H1 . . . Hn and R1 := Hn+1 . . . H2n. The fast phase then consists of
n rounds. In each of them, V picks a random bit ci (the challenge) and sends it to P .
The latter immediately answers ri := Rcii , the i-th bit of the register Rci .

5.1.1.3 Verification

At the end of the fast phase, the verifier checks that the answers received from the
prover are correct and that ∆ti ≤ ∆tmax (1 ≤ i ≤ n) .

5.1.2 Kim and Avoine’s protocol

Kim and Avoine’s protocol (KAP) [126], represented in Figure 5.2, basically relies on
predefined challenges. Predefined challenges allow the prover to detect that an attack
occurs as follows: the prover and the verifier agree on some predefined 1-bit challenges;
if the adversary sends in advance a challenge to the prover that is different from the
expected predefined challenge, then the prover detects the attack and since then, it sends
random responses to the adversary. The complete description of the KAP protocol is
provided below.

5.1.2.1 Initialisation

The prover (P) and the verifier (V) share a secret x and agree on: (i) a security param-
eter n, (ii) a public hash function H, whose output size is 4n, and (iii) a certain timing
bound ∆tmax.
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Prover Verifier
slow phase

generates NP generates NV
NV←−−−−−−−−−−−−−−−−−
NP−−−−−−−−−−−−−−−−−→

H2n = H(x,NP , NV ) H2n = H(x,NP , NV )

R0 = H1 . . . Hn R0 = H1 . . . Hn

R1 = Hn+1 . . . H2n R1 = Hn+1 . . . H2n

fast phase
for i = 1 to n:

picks a bit ci
ci←−−−−−−−−−−−−−−−− starts timer

ri = Rcii
ri−−−−−−−−−−−−−−−−→ stops timer

Figure 5.1: Hancke and Kuhn’s protocol

5.1.2.2 Protocol

As previously, V and P exchange nonces NV and NP . From these values they com-
pute H4n = H(x,NP , NV ), and split it in four registers. R0 := H1 . . . Hn and
R1 := Hn+1 . . . H2n are the potential responses. The register D := H3n+1 . . . H4n

contains the potential predefined challenges. Finally, the register T := H2n+1 . . . H3n

allows the verifier to decide whether a predefined challenge should be sent: in round i,
if Ti = 1 then a random challenge is sent; if Ti = 0 then the predefined challenge Di is
sent instead.

5.1.2.3 Verification

At the end of the fast phase, the verifier checks whether the answers received from the
prover are correct and that ∆ti ≤ ∆tmax (1 ≤ i ≤ n).

5.1.3 Avoine and Tchamkerten’s protocol

The Avoine and Tchamkerten’s protocol (ATP) [29] is slightly different from the other
existing distance bounding protocols. This protocol is also based on single bit chal-
lenge/response exchanges. However, the authors propose the use of a decision tree to
set up the fast phase. Figure 5.3 depicts the protocol detailed below.
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Prover Verifier
slow phase

generates NP generates NV
NV←−−−−−−−−−−−−−−−−−
NP−−−−−−−−−−−−−−−−−→

H4n = H(x,NP , NV ) H4n = H(x,NP , NV )

R0 = H1 . . . Hn R0 = H1 . . . Hn

R1 = Hn+1 . . . H2n R1 = Hn+1 . . . H2n

T = H2n+1 . . . H3n T = H2n+1 . . . H3n

D = H3n+1 . . . H4n D1 = H3n+1 . . . H4n

fast phase
for i = 1 to n:

picks a random bit si

ci =

{
si if Ti = 1

Di otherwise
ci←−−−−−−−−−−−−−−−− starts timer

if Ti = 1

ri = Rcii
otherwise:

ri =

{
R0
i if ci = Di

random otherwise
ri−−−−−−−−−−−−−−−−→ stops timer

Figure 5.2: Kim and Avoine’s protocol

5.1.3.1 Initialisation

The prover and the verifier share a secret x, and they agree on: (i) two security param-
eters n = αk and m, (ii) a pseudo-random function PRF whose output size is at least
m+ α(2k+1 − 2) bits, and (iii) a timing bound ∆tmax.

5.1.3.2 Protocol

The prover P and the verifier V generate two nonces NP and NV respectively. The
verifier sends his nonce to P . Upon reception, the latter computes PRF (x,NP , NV )

and sends [PRF (x,NP , NV )]m1 , the first m bits of PRF (x,NP , NV ), and P also sends
NP . These bits are used for the authentication.

P and V use the remaining α(2k+1 − 2) bits to label the nodes of α binary
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decision trees of depth k. Each node of the trees1 is labeled by one bit from
[PRF (x,NP , NV )]

m+α(2k+1−2)
m+1 (the remaining bits) in a one-to-one way. These labels

represent the prover’s responses during the fast phase. The challenges are represented
by the edges of the trees; left and right edges are labeled with 0 and 1 respectively.

Afterwards, the fast phase begins, for 1 ≤ i ≤ α, and 1 ≤ j ≤ k, V picks a bit
cij at random, starts a timer and sends cij to P . The latter immediately answers a bit
rij = node(ci1, . . . c

i
j), i.e. the value of the node located in the i-th tree and reached

from the root by taking the sequence of decision bits ci1, . . . , cij . Once V receives P ’s
response, he stops his timer and computes ∆tij .

5.1.3.3 Verification

The verifier authenticates the prover if the m bits, sent during the slow phase, are
correct. The prover succeeds in the distance-bounding stage, if all his responses are
correct and if for all 1 ≤ i ≤ α and 1 ≤ j ≤ k, ∆tij ≤ ∆tmax.

Prover Verifier
slow phase

generates NP generates NV
NV←−−−−−−−−−−−−−−−−−

computes PRF (x,NP , NV )
NP , [PRF (x,NP ,NV )]m1−−−−−−−−−−−−−−−−−−→

computes PRF (x,NP , NV )

fast phase
for i = 1 to α:
for j = 1 to k:

picks a bit cij
cij←−−−−−−−−−−−−−−−−− starts timer

rij = node(ci1, . . . , c
i
j)

rij−−−−−−−−−−−−−−−−−→ stops timer

Figure 5.3: Avoine and Tchamkerten protocol

5.2 Graph-based distance-bounding protocol

The ATP protocol [29] in its standard configuration (α = 1) relies on a binary tree.
The amount of memory needed to build this binary tree is exponential regarding the

1Except the roots.
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number of rounds. Although the authors in [29] proposed to split the binary tree in
order to reduce the memory requirements, they pointed out that this procedure leads
to a significant decrease in the security level of the protocol. We go a step forward
and propose protocols based on graphs rather than trees. The graph-based protocols,
as presented below, provide a greater design flexibility, a high security level and a low
memory consumption.

5.2.1 Initialisation

5.2.1.1 Parameters

The prover P and the verifier V agree on four public parameters: (i) a security parameter
n that represents the number of rounds in the protocol, (ii) a timing bound ∆tmax, (iii)
a pseudo random function PRF whose output size is 4n bits, and (iv) a directed graph
G whose characteristics are discussed below. They also agree on a shared secret x.

5.2.1.2 Graph

To achieve n rounds, the proposed graph requires 2n nodes {q0, q1, . . . , q2n−1}, and 4n

edges {s0, s1, · · · , s2n−1, `0, `1, · · · , `2n−1} such that si (0 ≤ i ≤ 2n− 1) is an edge from
qi to q(i+1) mod 2n, and `i (0 ≤ i ≤ 2n−1) is an edge from qi to q(i+2) mod 2n. Figure 5.4
depicts the graph when n = 4.

q0

q4

q2q6

q1

q3

q7

q5

ℓ0

s0

s1

ℓ1

ℓ2

s2

s3

ℓ3

ℓ4

s4

s5

ℓ5

ℓ6

s6

s7

ℓ7

Figure 5.4: Graph when n = 4
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5.2.2 Exchanges

As described below, the protocol is divided in two phases, a slow one and a fast one.
Figure 5.5 summarises the protocol.

Slow phase – P and V generate noncesNP andNV , respectively, and exchange them.
From these values and the secret x, they compute H1|| . . . ||H4n = PRF (x,NP , NV )

where Hi denotes the i-th bit of the output of PRF (x,NP , NV ). The bits H1, . . . ,H4n

set up the graph G as follows: the first 2n bits are used to value the nodes while the
remaining bits are used to value the edges si (0 ≤ i ≤ 2n − 1); finally, `i = si ⊕ 1

(0 ≤ i ≤ 2n− 1).

Fast phase – This phase consists of n stateful rounds numbered from 0 to n − 1.
In the i-th round P ’s state and V ’s state are represented by the nodes qpi and qvi
respectively: initially qp0 = qv0 = q0. Upon reception of the i-th challenge ci, P moves
to the node qpi to qpi+1 in the following way: qpi+1 = q(pi+1) mod 2n if si is labeled
with ci, otherwise qpi+1 = q(pi+2) mod 2n. Finally, the prover sends as response ri the
bit-value of the node qpi+1 . Upon reception of the prover’s answer ri, the verifier stops
his timer, and computes ∆ti, i.e. the round trip time spent for this exchange. Besides,
V moves to the node qvi+1 using the challenge ci (as the prover did but from the node
qvi) and checks if qvi+1 = ri.

5.2.3 Verification

The authentication succeeds if all the responses are correct, and each round is completed
within the time bound ∆tmax.

5.3 Security analysis of the graph-based protocol

As stated in the introduction, mafia fraud and distance fraud are the two main security
concerns when considering distance bounding protocols. We analyse in this section the
graph-based protocol with respect to these frauds.

5.3.1 Mafia fraud

To analyse the mafia fraud we consider the adversary abilities complying with the
models provided in [29], [100] and [126]. Below, we define the head node and rephrase
the well-known pre-ask strategy (see for example [164]) with our terminology.

Definition 15 (Head node). Given a sequence of challenges {c1, c2, · · · , ci} (1 ≤ i ≤
n), the head node is the node that should be used by the prover to send the response
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Prover Verifier
slow phase

generates NP generates NV
NV←−−−−−−−−−−−−−−−−
NP−−−−−−−−−−−−−−−−→

H4n = PRF (x,NP , NV ) H4n = PRF (x,NP , NV )

fills the graph: fills the graph:
for i = 0 to 2n− 1: for i = 0 to 2n− 1:

`i = Hi+2n+1

si = Hi+2n+1

qi = Hi+1


`i = Hi+2n+1

si = Hi+2n+1

qi = Hi+1

fast phase
for i = 0 to n− 1:

picks a bit ci
ci←−−−−−−−−−−−−−−− starts timer

moves from qpi to qpi+1

ri = qpi+1

ri−−−−−−−−−−−−−−−→ stops timer
moves from qvi to qvi+1

checks if ri = qvi+1

Figure 5.5: The new graph-based proposal

to the verifier according to this sequence of challenges. The head node is denoted as
Ω(c1, c2, · · · , ci).

Definition 16 (Pre-ask strategy). The pre-ask strategy begins at the end of the slow
phase and before the beginning of the fast phase. First, the adversary sends a se-
quence of challenges {c̃1, c̃2, · · · , c̃n} to the prover and receives a sequence of responses
{Ω(c̃1),Ω(c̃1, c̃2), · · · ,Ω(c̃1, c̃2, · · · , c̃n)}.
Later, during the fast phase, the adversary tries to use the information obtained from
the prover in the best way. Let us consider {c1, c2, · · · ci} the challenges sent by the
verifier until the i-th round during the fast phase. If ∀j s.t. 1 ≤ j ≤ i, we have cj = c̃j
then the adversary sends as response Ω(c̃1, c̃2, · · · , c̃i). Otherwise she sends as response
the value Ω(c̃1, c̃2, · · · , c̃j) where j is selected according to some rule that will be defined
later.

Remark 2. Sending a combination of two or more values as response is completely
useless for the adversary because the nodes’ values in the graph are independent from
each other. Furthermore, in the graph-based protocol one node is never used twice to send
a response. Therefore, the adversary can neither obtain nor infer more information than
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the one obtained from the prover. Finally, note that in the security analysis of previous
protocols [29], [100] and [126], the best adversary strategy is to pick j = i for every
round, i.e. the adversary sends exactly what she received from the prover in the i-th
round. However, as we explain below, in the graph-based protocol it makes sense to send
a value received in a different round.

While the challenges sent by the adversary match the challenges sent by the verifier,
the adversary is able to send the correct response. However, after the first incorrect ad-
versary challenge, she can no longer be convinced about the correctness of her response.
Consequently, we analyse below the adversary success probability when the adversary
sends at least an incorrect challenge to the prover during the pre-ask strategy.

Theorem 1. Let (c1, c2, · · · , ci) be the sequence of verifier challenges until the i-th
round, and let (c̃1, c̃2, · · · , c̃n) be the sequence of adversary challenges in the pre-ask
strategy. Let F be the random variable representing the first round in which ct 6= c̃t
(1 ≤ t ≤ n). Given Ω(c̃1, c̃2, · · · , c̃j), the adversary response in the i-th round for some
(1 ≤ j ≤ n), we have:

Pr(Ω(c̃1, c̃2, · · · , c̃j) = Ω(c1, c2, · · · , ci)|F = t) =


1 if i < t and i = j,
1
2 if i < t and i 6= j,
1
2 if i ≥ t and j < t,

p(t) if i ≥ t and j ≥ t,

where p(t) = 1
2 + 1

2i+j−2t+2

∑k=2n−1
k=0

(
Ai−t[1, k]Aj−t[2, k] +Ai−t[2, k]Aj−t[1, k]

)
, and A

is the adjacency matrix of the graph which represents the graph-based protocol.

Proof. We analyse the problem by cases:

Case 1 (i < t and i = j). As i < t then ∀1 ≤ k ≤ i, c̃k = ck, therefore
Ω(c̃1, c̃2, · · · , c̃j) = Ω(c1, c2, · · · , ci).
Case 2 (i < t and i 6= j). As i < t then Ω(c̃1, c̃2, · · · , c̃i) = qvi = Ω(c1, c2, · · · , ci). On
the other hand, as i 6= j then qvi and Ω(c̃1, c̃2, · · · , c̃j) are not the same node in the graph.
As the node values in the graph are independent, we conclude that, Pr(Ω(c̃1, c̃2, · · · , c̃j) =

Ω(c1, c2, · · · , ci)) = 1
2 .

Case 3 (i ≥ t and j < t). This case is analog to Case 2.

Case 4 (i ≥ t and j ≥ t). Let be qvi = Ω(c1, c2, · · · , ci) and
qaj = Ω(c̃1, c̃2, · · · , c̃j), so:

Pr(Ω(c̃1, c̃2, · · · , c̃j) = Ω(c1, c2, · · · , ci)) = Pr(qvi = qaj ) . (5.1)
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Now, Pr(qvi = qaj ) = Pr(qvi = qaj |vi = aj) Pr(vi = aj) + Pr(qvi = qaj |vi 6=
aj) Pr(vi 6= aj) where Pr(qvi = qaj |vi = aj) = 1 by definition of the graph-based protocol.
On the other hand, Pr(qvi = qaj |vi 6= aj) = 1

2 because the node values are selected at
random in the protocol. Then

Pr(qvi = qaj ) =
1

2
+

Pr(vi = aj)

2
. (5.2)

As 0 ≤ vi, aj ≤ 2n− 1 then

Pr(vi = aj) =
k=2n−1∑
k=0

Pr(vi = k) Pr(aj = k) . (5.3)

As ct 6= c̃t for the first time, then two equally probable cases occur: 1) Ω(c1, · · · , ct) =

qx and Ω(c̃1, · · · , c̃t) = qx+1, 2) Ω(c1, · · · , ct) = qx+1 and Ω(c̃1, · · · , c̃t) = qx, where
(0 ≤ x ≤ 2n− 1) and ∀x, x+ 1 = (x+ 1) mod 2n. Using these two events in Equation
5.3 we obtain:

Pr(vi = aj) =
1

2

(
k=2n−1∑

k=0

Pr(vi = k|Ω(c1, · · · , ct) = qx) Pr(aj = k|Ω(c1, · · · , ct) = qx+1)

+

k=2n−1∑
k=0

Pr(vi = k|Ω(c1, · · · , ct) = qx+1) Pr(aj = k|Ω(c1, · · · , ct) = qx)

)
. (5.4)

As Ay[x, k] represents the number of walks of size y between nodes x and k, then
Pr(vi = k|Ω(c1, · · · , ct) = qx) = Ai−t[x,k]

2i−t and Pr(vi = k|Ω(c1, · · · , ct) = qx+1) =
Ai−t[x+1,k]

2i−t ; in the same way Pr(aj = k|Ω(c1, · · · , ct) = qx) = Aj−t[x,k]
2j−t and Pr(aj =

k|Ω(c1, · · · , ct) = qx+1) = Aj−t[x+1,k]
2j−t . Then using Equation 5.4:

Pr(vi = aj) =
1

2i+j−2t+2

k=2n−1∑
k=0

(
Ai−t[x, k]Aj−t[x+ 1, k] +Ai−t[x+ 1, k]Aj−t[x, k]

)
.

(5.5)
Given the graph characteristics, we have Ay[x, k] = Ay[(x − z) mod 2n, (k − z)

mod 2n] for any z ∈ N. Therefore, Ai−t[x, k] = Ai−t[1, (k − x + 1) mod 2n] and
Ai−t[x+1, k] = Ai−t[2, (k−x+1) mod 2n], in the same way, Aj−t[x, k] = Aj−t[1, (k−
x+ 1) mod 2n] and Aj−t[x+ 1, k] = Aj−t[2, (k − x+ 1) mod 2n]. So:

2n−1∑
k=0

(
Ai−t[x, k]Aj−t[x+ 1, k] +Ai−t[x+ 1, k]Aj−1[x, k]

)
=
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2n−1∑
k=0

(
Ai−t[1, k]Aj−t[2, k] +Ai−t[2, k]Aj−t[1, k]

)
. (5.6)

Equations 5.1, 5.2, 5.5, and 5.6 yield the expected result.

Remark 3. Using Theorem 1, assuming c1 6= c̃1, for i = 1 we obtain that Pr(Ω(c̃1, c̃2) =

Ω(c1)) = 5
8 > Pr(Ω(c̃1, c̃2, · · · , c̃j) = Ω(c1)) for every j 6= 2. This means that in this

case it is better for the adversary to send the second response of the prover (Ω(c̃1, c̃2)).
These results only reinforce the ideas shown in Remark 2, that the best adversary strategy
is not always to pick j = i in the graph-based protocol.

Corollary 1. Given ri = Ω(c̃1, c̃2, · · · , c̃i) and c′i = Ω(c1, c2, · · · , ci) for every 1 ≤ i ≤ n,
the best adversary success probability in the mafia fraud is:

t=n∑
t=1

1

2t

(
i=n∏
i=t

max(Pr(r1 = c′i|F = t), · · · ,Pr(rn = c′i|F = t))

)
+

1

2n

where Pr(rj = c′i|F = t) is defined in Theorem 1.

Proof. The adversary success probability in the mafia fraud is:

t=n∑
t=1

(Pr(success|F = t) Pr(F = t)) + Pr(c1 = c̃1, c2 = c̃2, · · · , cn = c̃n) . (5.7)

As the challenges are selected at random, then:

Pr(F = t) = 1
2t .

Pr(c1 = c̃1, c2 = c̃2, · · · , cn = c̃n) = 1
2n .

(5.8)

Considering the pre-ask attack strategy in Definition 16:

Pr(success|F = t) =

i=n∏
i=t

max(Pr(r1 = c′i|F = t), · · · ,Pr(rn = c′i|F = t)) . (5.9)

Equations 5.7, 5.8, and 5.9 yield the expected result.
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5.3.2 Distance fraud

The distance fraud analysis for most of the distance-bounding protocols is not a hard
task. However, for the ATP [29] protocol, to the best of our knowledge, nobody has
computed the distance fraud success probability. Unfortunately, in the graph-based
protocol which has some similarities with the ATP protocol, distance fraud analysis is
also not trivial. Then, in this chapter we provide an upper bound on the distance fraud
for a sub-family of the distance-bounding protocols, which will be useful for the ATP
protocol and for the graph-based protocol.

Definition 17 (Distance-bounding protocol sub-family). Let us consider P a distance
bounding protocol. P belongs to the distance-bounding protocol sub-family if it fulfills
the following requirements:

• During the fast phase, in each round the verifier sends a bit as challenge and the
prover answers with a bit alike.

• There is no final phase.

• After the slow phase, it should be possible to build a function f : {0, 1}n → {0, 1}n
such that, given any sequence of challenges {c1, c2, · · · , cn}, then
f(c1, c2, · · · , cn) is the correct response sequence for the verifier. From now on,
we are going to call this function “prover function”.

Definition 18 (Prover function pre-image). For a sequence y ∈ {0, 1}n and a prover
function f , the prover function pre-image is the set Iy = {x ∈ {0, 1}n|f(x) = y}.
Definition 19 (Adversary capability in the distance fraud attack). The adversary ca-
pability in the distance fraud is twofold:

1. The adversary has access to the prover function.

2. The adversary can send in advance a sequence y ∈ {0, 1}n to the verifier, trying
to maximise Pr(f(c1, c2, · · · , cn) = y) where {c1, c2, · · · , cn} is a random sequence
of challenges.

Proposition 1. Let y be the sequence sent by the adversary in advance, then the success
probability in the distance fraud is |Iy |2n .

Undoubtedly, the best adversary strategy is to find and send a sequence y ∈ {0, 1}n
such that for any sequence x ∈ {0, 1}n it holds that |Iy| ≥ |Ix|.
Theorem 2. Given x, y ∈ {0, 1}n two random sequences, and a prover function f ,
then, for any sequence z ∈ {0, 1}n such that Iz 6= ∅ we have:

Pr(x ∈ Iz) ≤
1
2n +

√
1

22n
− 4

2n + 4 Pr(f(x) = f(y))

2
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Proof. Given that Iz 6= ∅, we have:

Pr(f(x) = f(y)) = Pr(f(x) = f(y)|y ∈ Iz) Pr(y ∈ Iz)
+ Pr(f(x) = f(y)|y /∈ Iz) Pr(y /∈ Iz) (5.10)

But, Pr(f(x) = f(y)|y ∈ Iz) = Pr(x ∈ Iz) = Pr(y ∈ Iz) because x and y are random
sequences. On the other hand, Pr(f(x) = f(y)|y /∈ Iz) ≥ 1

2n because of the “prover
function” definition. Therefore, using these results in Equation 5.10, we obtain:

Pr(f(x) = f(y)) ≥ Pr(x ∈ Iz)2 +
1

2n
(1− Pr(x ∈ Iz)) . (5.11)

By calculating the discriminant of this quadratic inequality, and obtaining its so-
lutions, we conclude the proof. Note that, this quadratic inequality has real solutions
because Pr(f(x) = f(y)) ≥ 1

2n , and in this case, the discriminant value is always posi-
tive.

Corollary 2. For every distance-bounding protocol that complies with Definition 17,
the adversary success probability in the distance fraud is upper-bounded by:

1
2n +

√
1

22n
− 4

2n + 4 Pr(f(x) = f(y))

2
.

With this result, we are giving a way to compute an upper bound of a sub-family
of the distance-bounding protocols. We show below how to apply this result to the
graph-based protocol, and later we apply the same result to the ATP protocol.

Theorem 3. The distance fraud success probability for the graph-based protocol is upper
bounded by:

1
2n +

√
1

22n
− 4

2n + 4p

2

where

p =
i=n∏
i=1

(
1

2
+

1

22i+1

k=2n−1∑
k=0

(Ai[0, k])2

)
.

Proof. Let us consider two random sequences x = {x1, x2, · · · , xn} and y =

{y1, y2, · · · , yn}, then by the definition of the graph-based protocol and the definition
of “Prover Function”:

Pr(f(x) = f(y)) =

i=n∏
i=1

Pr(Ω(x1, · · · , xi) = Ω(y1, · · · , yi)) . (5.12)
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Let be qxi = Ω(x1, · · · , xi) and qyi = Ω(y1, · · · , yi), then, like in Theorem1, we can
obtain that

Pr(qxi = qyi) =
1

2
+

Pr(xi = yi)

2
(5.13)

and

Pr(xi = yi) =
k=2n−1∑
k=0

Pr(xi = k) Pr(yi = k) . (5.14)

Once again, as Ai[j, k] represents the number of walks of size i between the nodes
j and k, where A is the adjacency matrix of the graph, then Pr(xi = k) = Ai[0,k]

2i
=

Pr(yi = k). Therefore, using Equation 5.14:

Pr(xi = yi) =

k=2n−1∑
k=0

(
Ai[0, k]

2i

)2

. (5.15)

Equations 5.12, 5.13 and 5.15 yield

Pr(f(x) = f(y)) =

i=n∏
i=1

(
1

2
+

1

22i+1

k=2n−1∑
k=0

(Ai[0, k])2

)
. (5.16)

By applying Equation 5.16 to Corollary 2, considering that p = Pr(f(x) = f(y)),
we conclude the proof of this theorem.

5.4 Experimental results and evaluation

We analyse mafia fraud resistance, distance fraud resistance and memory consumption.
Therefore, we need to measure the above features for each of the previous protocols. We
have detected that the mafia fraud success probability for the KAP protocol provided
in [126] is not correct. Also, as we previously said, the distance fraud success probability
of ATP was not presented in [29]. Therefore, we first provide both a correct calculation
of the mafia fraud success probability of the KAP protocol and an upper bound for the
distance fraud success probability of the ATP protocol.

5.4.1 Mafia fraud success probability for KAP

In the Kim and Avoine protocol, the adversary success probability in the mafia fraud
depends on the predefined challenges probability (pd). Define the following events:

• Li is the event “the adversary wins the i-th round”;
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• Di is the event “the adversary is detected in the i-th round by the tag for the first
time”;

• Ni is the event “the adversary is detected by the tag in the i-th round”;

• N is the event “the adversary is never detected”.

The notation Ā denotes the complement of event A.
By the law of total probability:

P (success) =

i=n∑
i=1

Pr(success|Di) Pr(Di) + Pr(success|N) Pr(N) . (5.17)

Since Pr(Ni) = pd
2 ,

Pr(N) = (1− pd
2

)n . (5.18)

The probability of being detected in the i-th round for the first time is:

Pr(Di) =

j=i−1∏
j=1

Pr(N̄j) Pr(Ni) =

(
2− pd

2

)i−1 (pd
2

)
. (5.19)

On the other hand

Pr(success|Di) =

j=i−1∏
j=1

Pr(Lj |N̄j)

j=n∏
j=i

Pr(Lj |Nj) (5.20)

where Pr(Lj |Nj) = 1
2 , and

Pr(Lj |N̄j) =
Pr(Lj ∩ N̄j)

Pr(N̄j)
(5.21)

where Pr(Lj ∩ N̄j) = Pr(Lj ∩ N̄j |pd)pd + Pr(Lj ∩ N̄j |pr)pr. But Pr(Lj ∩ N̄j |pd) = 1
2 ,

because the adversary must send the correct challenges cj in this round. And
Pr(Lj ∩ N̄j |pr) = 3

4 , because this is the same case as in the Hancke and Kuhn pro-
tocol. Therefore, Pr(Lj ∩ N̄j) = 1

2pd + 3
4pr = 3−pd

4 . Using this result in Equation 5.21
we obtain:

Pr(Lj |N̄j) =
3− pd
4− 2pd

. (5.22)

Using Equations 5.20 and 5.22 we obtain:

Pr(success|Di) =

(
3− pd
4− 2pd

)i−1(1

2

)n−i+1

, (5.23)
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and
Pr(success|N) =

(
3− pd
4− 2pd

)n
. (5.24)

Using Equations 5.17, 5.18, 5.19, 5.23 and 5.24, we obtain the adversary success
probability for the mafia fraud in the Kim and Avoine protocol:

P (success) =
pd
2

i=n∑
i=1

(
3− pd

4

)i−1(1

2

)n−i+1

+

(
3− pd

4

)n
. (5.25)

5.4.2 Distance fraud success probability for ATP

To find an upper bound for the adversary success probability in the distance fraud for
the ATP protocol, we use the result of Theorem 3. Indeed, this protocol behaves like
the graph-based protocol. The only difference between them is that the ATP protocol
creates a full tree as a graph. Therefore, in the ATP protocol the distance fraud success
probability is upper bounded by:

1
2n +

√
1

22n
− 4

2n + 4p

2
,

where

p =
i=n∏
i=1

(
1

2
+

1

22i+1

k=2n−1∑
k=0

(Ai[0, k])2

)
.

To give a complete equation, we define Ai[0, k] for a tree. For this purpose, we
consider that the nodes in the tree are labeled between 0 and 2n − 1 using a breadth-
first algorithm. Then:

Ai[0, k] =


1 if 2i − 1 ≤ k < 2i+1 − 1,

0 otherwise.

Finally we obtain:

p =

i=n∏
i=1

(
1

2
+

1

2i+1

)
.

5.4.3 Comparison

Since memory is a scarce resource in RFID tags and thus it is one of the main concerns in
distance-bounding protocols, we relax the ATP protocol to operate with linear memory.
As noted in [29], reducing memory in the ATP protocol increases the adversary success
probability for both types of fraud. Hence, we pick α = n

3 , in which case the memory



106 Chapter 5. The Poulidor Distance-bounding Protocol

Memory Mafia Fraud Distance Fraud
HKP 2n [100]

(
3
4

)n [100]
(
3
4

)n 2

KAP 4n [126] Section 5.4.1
(
3
4 + pd

4

)n [126]
ATP 2n+1 − 2 [29]

(
1
2

)n
(n2 + 1) [29] Section 5.4.2

ATP3 14n
3 [29]

(
1
2

)n (5
2

)n
3 [29] (0.3999)

n
3 3

GRAPH 4n Corollary 1 Theorem 3

Table 5.1: Memory consumption, mafia fraud success probability and distance fraud
success probability for the HKP protocol, the KAP protocol, the ATP protocols (ATP
and ATP3), and the graph-based protocol (GRAPH).

consumption equals 14n
3 ≈ 5n, while a sufficient security is still ensured. Note that this

memory consumption is in the range of the other studied protocol. This instance of the
ATP protocol is named “ATP3”.

Table 5.1 depicts the values of the three parameters for each protocol that we are
considering. In terms of memory, the Hancke and Kuhn protocol is, undoubtedly,
the best protocol. As can be seen in Figure 5.6, when considering only mafia fraud
resistance, the KAP and the ATP protocols are the best ones. Only in terms of distance
fraud, the lowest adversary success probability is reached by the ATP protocol (cf.
Figure 5.7).

However, our aim is to find the best protocol given a security level in terms of mafia
fraud and distance fraud. To that end, Figure 5.8 represents, for each pair of mafia and
distance fraud success probabilities, the protocol needing a lowest number of rounds to
reach these probabilities. As it can be seen in Figure 5.8, the graph-based protocol is,
in general, the best option when considering memory consumption, distance, and mafia
fraud at the same time. In particular, if one requires low success probabilities for both
mafia and distance fraud, we stress the particularly good behaviour of the graph-based
protocol. It should be remarked that in some cases more than one protocol is optimal
in terms of number of rounds; in this case, the best one in terms of memory is chosen.

2The distance fraud probability for the HKP protocol is computed using the distance fraud proba-
bility for the KAP protocol. Note that the KAP protocol with pd = 0 and the HKP protocol are the
same.

3The distance fraud probability for the ATP3 protocol is an accurate value, not an upper bound
like in ATP or GRAPH. It was computed by brute force, i.e. for a given instance, we computed the
adversary success probability. Then, considering all possible instances we deduce the probability in the
average case.
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Figure 5.6: Adversary success probability in the mafia fraud against the GRAPH pro-
tocol, the HKP protocol and the ATP3 protocol. The ATP protocol in its standard
configuration is not represented in this chart because it has the same mafia fraud prob-
ability as the KAP protocol.

5.5 Conclusions

In this chapter, we contribute to balancing mafia fraud resistance, distance fraud re-
sistance and memory consumption for distance-bounding protocols. In particular, we
provide a way to compute an upper bound on the distance-fraud probability, which
is useful for analysing previous protocols and designing future ones. In addition, we
propose a new distance-bounding protocol, and we show that the achieved security level
is better than all previously published distance-bounding protocols when considering
mafia fraud, distance fraud and memory at the same time.

We do not only provide a simple, fast, and flexible protocol, but we also introduce the
graph-based protocol concept and several new open questions. An interesting question
is to know if there are graph-based protocols that behave still better than the one
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Figure 5.7: Adversary success probability in the distance fraud against the GRAPH
protocol, the HKP protocol, and the ATP protocols (ATP and ATP3). The KAP pro-
tocol is not represented in this chart because it has the same distance fraud probability
as the HKP protocol in the best case.

presented here. In particular, if the number of rounds is not a critical parameter,
prover and verifier may be allowed to increase the number of rounds while keeping a
2n-node graph. This means that some nodes may be used twice. In such a case, the
security analysis provided in this chapter must be refined. On the other hand, although
a bound on the distance fraud success probability is provided, calculating the exact
probability of success is still cumbersome.
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comparing only protocols with linear memory consumption.





Chapter 6

Microaggregation- and
Permutation-Based Anonymisation

of Movement Data

This chapter describes a novel distance measure between trajectories not necessarily de-
fined over the same time span. By using it, two permutation-based trajectory anonymi-
sation algorithms are proposed. Both algorithms preserve the true original locations of
trajectories and provide better utility properties than previous algorithms.
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Various technologies such as GPS, RFID, GSM, etc., can sense and track the where-
abouts of objects (cars, parcels, people, etc.). In addition, the current storage capac-
ities allow collecting such object movement data in huge spatio-temporal databases.
Analysing this kind of databases containing the trajectories of objects can lead to use-
ful and previously unknown knowledge. Therefore, it is beneficial to share and publish
such databases and let the analysts derive useful knowledge from them—knowledge that
can be applied, for example, to intelligent transportation, traffic monitoring, urban and
road planning, supply chain management, sightseeing improvement, etc.

However, the privacy of individuals may be affected by the publication or the out-
sourcing of databases of trajectories. Several kinds of privacy threats exist. Simple
de-identification realised by removing identifying attributes is insufficient to protect the
privacy of individuals. The biggest threat with trajectories is the “sensitive location
disclosure”. In this scenario, knowing the times at which an individual visited a few
locations can help an adversary to identify the individual’s trajectory in the published
database, and therefore learn the individual’s other locations at other times. Privacy
preservation in this context means that no sensitive location ought to be linkable to an
individual.

The risk of sensitive location disclosure is also affected by how much the adversary
knows. The adversary may have access to auxiliary information [122], sometimes called
side knowledge, background knowledge or external knowledge. The adversary can link
such background knowledge obtained from other sources to information in the published
database. Estimating the amount and extent of auxiliary information available to the
adversary is a challenging task.

There are quite a few differences between spatio-temporal data and microdata, i.e.
records describing individuals in a standard database with no movement data. One real
difference becomes apparent when considering privacy. Unfortunately, the traditional
anonymisation and sanitisation methods for microdata [85] cannot be directly applied
to spatio-temporal data without considerable expense in computation time and informa-
tion loss. Hence, there is a need for specific anonymisation methods to thwart privacy
attacks and therefore reduce privacy risks associated with publishing trajectories.

Trajectories can be modeled and represented in many ways [81]. Without loss of
generality, we consider a trajectory to be a timestamped path in a plane. By assuming
movements on the surface of the Earth, the altitude of each location visited by a trajec-
tory stays implicit; it could be explicitly restored if the need arose. More formally, let
timestamped location be a triple (t, x, y) with t being a timestamp and (x, y) a location
in R2. Intuitively, the timestamped location denotes that at time t an object is at
location (x, y).
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Definition 20 (Trajectory). A trajectory is an ordered set of timestamped locations

T = {(t1, x1, y1), . . . , (tn, xn, yn)} , (6.1)

where ti < ti+1 for all 1 ≤ i < n.

Definition 21 (Sub-trajectory). A trajectory S = {(t′1, x′1, y′1), . . . , (t′m, x′m, y′m)} is a
sub-trajectory of T in Expression 6.1, denoted S � T , if there exist integers 1 ≤ i1 <

. . . < im ≤ n such that (t′j , x
′
j , y
′
j) = (tij , xij , yij ) for all 1 ≤ j ≤ m.

Hereinafter, we will use triple as a synonym for timestamped location. When there
is no risk of ambiguity, we also say just “location” to denote a timestamped location.

We present two heuristic methods for preserving the privacy of individuals when
releasing trajectories. Both of them exactly preserve original locations in the sense
that the anonymised trajectories contain no fake, perturbed or generalised trajectories.
The first heuristic is based on microaggregation [68] of trajectories and permutation of
locations. Microaggregation has been successfully used in microdata anonymisation to
achieve k-anonymity [195, 209, 72]. We use it here for trajectory k-anonymity (whereby
an adversary cannot decide which of k anonymised trajectories corresponds to an origi-
nal trajectory which she partly knows), first by grouping the trajectories into clusters of
size at least k based on their similarity and then transforming via location permutation
the trajectories inside each cluster to preserve privacy. The second heuristic aims no
longer at trajectory k-anonymity, but at location k-diversity (whereby knowing a sub-
trajectory S of a certain original trajectory T allows an adversary to discover a location
in T \S with probability no greater than 1/k); this second heuristic is based on location
permutation and its strong point is that it takes reachability constraints into account:
movement between locations must follow the edges of an underlying graph (e.g., urban
pattern) so that not all locations are reachable from any given location. Experimen-
tal results show that achieving trajectory k-anonymity with reachability constraints
may not be possible without discarding a substantial fraction of locations, typically
those which are rather isolated. This is the motivation for our second heuristic: it still
considers reachability but it reduces the number of discarded locations by replacing
k-anonymity at the trajectory level by k-diversity at the location level.

For clustering purposes, we propose a new distance for trajectories which naturally
considers both spatial and temporal coordinates. Our distance is able to compare tra-
jectories that are not defined over the same time span, without resorting to time gener-
alisation. Our distance function can compare trajectories that are timewise overlapping
only partially or not at all. It may seem at first sight that the distance computation
is exponential in terms of all considered trajectories, but we show that it is in fact
computable in polynomial time.

We present empirical results for the two proposed heuristics using synthetic data and
also real-life data. We theoretically and experimentally compare our first heuristic with
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a recent trajectory anonymisation method called (k, δ)-anonymity [12] also aimed at
trajectory k-anonymity without reachability constraints. Theoretical results show that
the privacy preservation of our first method is the same as that of (k, δ)-anonymity
but dealing with trajectories not having the same time span. For the second heuristic
involving reachability constraints, no comparable counterparts seem to exist in the
literature.

6.1 Trajectory similarity measures

Using microaggregation for trajectory k-anonymisation requires a distance function to
measure the similarity between trajectories. Such a distance function must consider
both space and time. Although most spatial distances can be extended into spatio-
temporal distances by adding a time co-ordinate to spatial points, it is not obvious
how to balance the weight of spatial and temporal dimensions. Furthermore, not all
similarity measures for trajectories are suitable for comparing trajectories for anonymi-
sation purposes. The requirement for anonymisation is not just similarity regarding
shape, but also spatial and temporal closeness. Some typical distances for trajectories
include the Euclidean distance, the Hausdorff distance [198], the Fréchet distance [19],
the turning point distance [20], and distances based on time series [150] —e.g., dynamic
time warping (DTW), short time series (STS)— and on edit distance [57] —e.g, edit
distance with real penalty (ERP), longest common sub-sequence (LCSS), and the edit
distance on real sequences (EDR) discussed next.

The edit distance on real sequences (EDR) [57] is the number of insert, delete, or
replace operations that are needed to change one sequence into another. If P and Q are
two sequences of m and n triples, respectively, where each triple λ has three attributes
– x-position λ.x, y-position λ.y and time λ.t – the distance EDR(P,Q) is defined as

max{m,n} if m = 0 or n = 0

min{match(p1, q1) + EDR(Rest(P ), Rest(Q)), otherwise
1 + EDR(Rest(P ), Q), 1 + EDR(P,Rest(Q))}

where p1 and q1 are the first elements of a given sequence, Rest(·) is a function that
returns the input sequence without the first element, and where match(p, q) := 0 if p
and q are “close”, that is, they satisfy either |p.x− q.x| ≤ ε and |p.y− q.y| ≤ ε for some
parameter ε [57] or |p.x− q.x| ≤ ∆.x, |p.y− q.y| ≤ ∆.y, and |p.t− q.t| ≤ ∆.t for a triple
of parameters ∆ [13]; otherwise, match(p, q) := 1. This definition of match means that
the cost for one insert, delete, or replace operation in EDR is 1 if p and q are not “close”.

EDR has been used for anonymisation in [13]. However, the edit distance and vari-
ations thereof are not suitable to guide clustering for anonymisation purposes. Indeed,
Figure 6.1 shows trajectories with different degrees of “closeness” to trajectory A, but
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whose EDR distance from A is the same in all cases. When time-stamps are considered,
the situation is even worse.

In Section 6.3, we define a distance measure which is better suited for anonymisa-
tion clustering: it can compare trajectories defined over different time spans and even
trajectories that are time-wise non-overlapping.

B

C

D

E

A

Figure 6.1: Trajectories B,C,D,E are placed at varying “closeness” from A, yet their
EDR distance from A is 3 in all cases. We assume that the first point of A matches the
first point of each of B,C,D,E; also, second points are assumed to match each other,
and the same for third points.

6.2 Utility and privacy requirements

Every trajectory anonymisation algorithm must combine utility and privacy. However,
utility and privacy are two largely antagonistic concepts. What is useful in a set of
trajectories is application-dependent, so for each utility feature probably a different
anonymisation algorithm is needed.

6.2.1 Desirable utility features

The utility features that are usually considered in trajectory anonymisation are: (i)
trajectory length preservation, (ii) trajectory shape preservation, (iii) trajectory time
preservation, and (iv) minimisation of the number of discarded locations. We include
two additional utility features that are particularly meaningful in urban scenarios:

• Location preservation. This essentially means that no fake or inaccurate locations
are used to replace original locations; otherwise put, locations in the anonymised
trajectories should be locations visited by the original trajectories, without any
generalisation or accuracy loss. Preserving original locations helps answering
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several queries that may not be responded by generalisation methods [162] or
some microaggregation methods [12, 13]: (i) what is the ranking of original (non-
removed) locations, from most visited to least visited?; (ii) in which original (non-
removed) locations did two or more mobile objects meet?, etc. On the other hand,
if trajectory anonymisation rests on replacing true locations with fake locations,
an adversary can distinguish the latter from the former and discard fake locations.
Hence, location preservation is desirable for both utility and privacy reasons.

• Reachability. In the second proposed heuristic, easy reachability between two
successive locations in each anonymised trajectory is enforced. This means that
the distance from the i-th location to the i + 1-th location on an anonymised
location following the underlying network of streets and/or roads should be at
most Rs, where Rs is a preset parameter. Like location preservation, this is as
good for utility as it is for privacy: if the adversary sees that reaching the i+ 1-
th location from the i-th one takes a long trip across streets and roads, she will
guess that the section between those two locations was not present in any original
trajectory.

6.2.2 Specific utility measures

Basic utility measures are the number of removed trajectories and the number of re-
moved locations, whether during pre-processing, clustering or cluster anonymisation.

The distortion of the trajectory shape is another utility measure, which can be
captured with the space distortion metric [12, Sec.VI.B]. This metric also allows accu-
mulating the total space distortion of all anonymised trajectories from original ones.

Definition 22 (Space distortion metric [12]). The space distortion of an anonymised
trajectory T ? with respect to its original trajectory T at time t when T has triple (t, x, y)

and T ? has possible triple (t, x?, y?), is

SDt(T, T
?) =

{
∆((x, y), (x?, y?)) if (x?, y?) is defined at t
Ω otherwise

where ∆ is a distance (e.g. Euclidean), and Ω a constant that penalises for removed
locations. The space distortion of an anonymised trajectory T ? from its original T is
then

SD(T, T ?) =
∑
t∈TS

SDt(T, T
?) ,

where TS are all the timestamps where T is defined. In particular, if T is discarded
during anonymisation, T ? is empty, and so SD(T, T ?) = nΩ, where n = |TS| is the
number of locations of T . In this way, the space distortion of a set of trajectories T
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from its anonymised set T ? is easily defined as

TotalSD(T , T ?) =
∑
T∈T

SD(T, T ?) ,

where T ? ∈ T ? (which may be empty) corresponds to T ∈ T .
Another way to measure utility is by comparing the results between queries per-

formed on both the original data set T and the anonymised data set T ?. Intuitively,
when results on both data sets are similar for a large and diverse number of queries,
the anonymised data set can be regarded as preserving the utility of the original data
set. The challenge of this utility measure is the selection of queries, which is usually
application-dependent or even user-dependent, i.e. two different users are likely to
perform different queries on the same trajectory data set.

In [213] six types of spatio-temporal range queries were introduced, aimed at eval-
uating the relative position of a moving object with respect to a region R in a time
interval [tb, te]. We have used these queries in our experimental work, even though they
were designed for use on uncertain trajectories (see Definition 23) rather than synthetic
trajectories.

Definition 23 (Uncertain trajectory). Given a trajectory T and an uncertainty space
threshold σ, an uncertain trajectory U(T, σ) is defined as the pair < T, σ >, where
(t, x, y) ∈ U(T, σ) if and only if ∃x′, y′ such that (t, x′, y′) ∈ T and the Euclidean
distance between (x, y) and (x′, y′) is not greater than σ.

Definition 24 (Possible motion curve). A possible motion curve PMCT of an uncer-
tain trajectory U(T, σ) is an ordered set of timestamped locations

PMCT = {(t1, x1, y1), . . . , (tn, xn, yn)} , (6.2)

such that (ti, xi, yi) ∈ U(T, σ) for all 1 ≤ i ≤ n.
In short, a possible motion curve defines one of the possible trajectories that an ob-

ject moving along an uncertain trajectory could follow. Unlike in [213], our anonymised
trajectories are not uncertain; hence, we will only use the two spatio-temporal range
queries proposed in that paper that can be adapted to non-uncertain trajectories:

• Sometime_Definitely_Inside(T , R, tb, te) is true if and only if there exists a time
t ∈ [tb, te] at which every possible motion curve PMCT of an uncertain trajectory
U(T, σ) is inside region R. For a non-uncertain T , the previous condition can be
adapted as: if and only if there exists a time t ∈ [tb, te] at which T is inside R.

• Always_Definitely_Inside(T , R, tb, te) is true if and only if at every time t ∈
[tb, te], every possible motion curve PMCT of an uncertain trajectory U(T, σ) is
inside region R. For a non-uncertain T , the previous condition becomes: if and
only if at every time t ∈ [tb, te], trajectory T is inside R.
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6.2.3 Adversarial model and target privacy properties

In our adversarial model, the adversary has access to the published anonymised set of
trajectories T ?. Furthermore, the adversary also knows that every location λ ∈ T ? must
be in the original set of trajectories T . Note that this adversary’s knowledge makes an
important difference from previous adversarial models [12, 167, 162, 228], because in
our model the linkage of some location with some user reveals the exact location of this
user rather than a generalised or perturbed location.

Further, the method used for transforming the original set of trajectories T into
T ? is assumed known by the adversary. However, this does not include the method
parameters or the seeds for pseudo-random number generators, which are considered
secret. Indeed, the two methods we are proposing rely on random permutations of
locations and random selection of trajectories during the clustering process, and such
randomness is in practice implemented using pseudo-random number generators. If an
adversary knew the seeds of the generators, she could easily reconstruct the original
trajectories from the anonymised trajectories.

Finally, the adversary also knows a sub-trajectory S of some original target trajec-
tory T ∈ T (S � T ) and knows that the anonymised version of T is in T ?. As in
previous works, we consider that every location in T is sensitive, i.e. for any location,
learning that a specific user visited it represents useful knowledge for the adversary.

Then, we identify two attacks:

1. Find a trajectory T ? ∈ T ? that is the anonymised version of T .

2. Given a location λ 6∈ S, determine whether λ ∈ T .

If the adversary succeeds in the first attack of linking a trajectory T ? with the
target T , the second is not trivial, because in general the locations in T ? will not be
those in T , but it is indeed easier. This means that both attacks are not independent.
However, the second attack can trivially succeed even if the first attack does not: if
all anonymised trajectories cross the same location λ and λ 6∈ S, the attacker knows
that λ ∈ T . As we show below, both attacks are related to the two well-known privacy
notions of k-anonymity [195, 209] and `-diversity [154], respectively.

Definition 25 (Trajectory p-privacy). Let PrT ? [T |S] denote the probability of the ad-
versary’s correctly linking the anonymised trajectory T ? ∈ T ? with T given the adver-
sary’s knowledge S � T . Then, trajectory p-privacy is met when PrT ? [T |S] ≤ p for
every trajectory T ∈ T and every subset S � T .

Definition 26 (Trajectory k-anonymity). Trajectory k-anonymity is achieved if and
only if trajectory 1

k -privacy is met.

Definition 27 (Location p-privacy). Let Prλ[T |S] denote the probability of the ad-
versary’s success in correctly determining a location λ ∈ T \ S, given the adversary’s
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knowledge S � T . Then, location p-privacy is met when Prλ[T |S] ≤ p for every triple
(T, S, λ) such that T ∈ T , S � T and λ 6∈ S.

Definition 28 (Location k-diversity). Location k-diversity is achieved if and only if
location 1

k -privacy is met.

6.2.4 Discussion on privacy models

Achieving straightforward trajectory k-anonymity, where each anonymised trajectory
would be identical to k − 1 other anonymised trajectories, would in general cause a
huge information loss. This is why some other trajectory k-anonymity definitions under
different assumptions have been proposed.

The (k, δ)-anonymity definition [12, 13] relies on the uncertainty inherent to tra-
jectory data recorded by technologies like GPS. However, it may be hardly applied
when accurate data sets of trajectories are needed. Furthermore, in order to achieve
(k, δ)-anonymity, the k identical anonymised trajectories should be defined roughly in
the same interval of time and they must contain the same number of locations. Such
constraints are indeed hard to meet.

According to our privacy model, trajectory k-anonymity is achieved when there are
at least k anonymised trajectories in T ? having an anonymised version of T as a sub-
trajectory. Although this definition ignores the time dimension, it does not require
the length of the k anonymised trajectories to be equal. However, suppose that the
adversary has a trajectory T consisting of only one location, an individual’s home;
whatever the anonymisation method, the anonymised version of T is likely to be very
similar to T . This means that there will be k anonymised trajectories containing the
single location of T . However, not all of these anonymised trajectories start at the
single location of T . Since an individual’s home is likely to be the first location of any
individual’s original trajectory, those anonymised trajectories that do not start at the
single location of T (just pass through it) can be filtered out by an adversary and only
the remaining trajectories are considered. The same filtering process can be performed
if the adversary knows locations where the individual has never been. In this way, using
side knowledge the adversary identifies less than k anonymised trajectories compatible
with the original trajectory T . Hence, this definition may not actually guarantee k-
anonymity in the sense of Definition 26.

In conclusion, different levels of privacy can be provided according to different as-
sumptions on the original data, the anonymised data, and the adversary’s capabilities.
We defined above trajectory p-privacy (Definition 25) and location p-privacy (Defini-
tion 27) in order to capture two different privacy notions when the original locations
are preserved.
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6.3 Distance between trajectories

Clustering trajectories requires defining a similarity measure —a distance between two
trajectories. Because trajectories are distributed over space and time, a distance that
considers both spatial and temporal aspects of trajectories is needed. Many distance
measures have been proposed in the past for both trajectories of moving objects and
for time series but most of them are ill-suited to compare trajectories for anonymisation
purposes. Therefore we define a new distance which can compare trajectories that are
only partially or not at all timewise overlapping. We believe this is necessary to cluster
trajectories for anonymisation. We need some preliminary notions.

6.3.1 Contemporary and synchronised trajectories

Definition 29 (p%-contemporary trajectories). Two trajectories

Ti = {(ti1, xi1, yi1), . . . , (tin, xin, yin)}

and
Tj = {(tj1, xj1, yj1), . . . , (tjm, xjm, yjm)}

are said to be p%-contemporary if

p = 100 ·min(
I

tin − ti1
,

I

tjm − tj1
)

with I = max(min(tin, t
j
m)−max(ti1, t

j
1), 0).

Intuitively, two trajectories are 100%-contemporary if and only if they start at the
same time and end at the same time; two trajectories are 0%-contemporary if and only
if they occur during non-overlapping time intervals. Denote the overlap time of two
trajectories Ti and Tj as ot(Ti, Tj).

Definition 30 (Synchronised trajectories). Given two p%-contemporary trajectories Ti
and Tj for some p > 0, both trajectories are said to be synchronised if they have the
same number of locations time-stamped within ot(Ti, Tj) and these correspond to the
same time-stamps. A set of trajectories is said to be synchronised if all pairs of p%-
contemporary trajectories in it are synchronised, where p > 0 may be different for each
pair.

If we assume that between two locations of a trajectory, the object is moving along
a straight line between the locations at a constant speed, then interpolating new loca-
tions is straightforward. Trajectories can be then synchronised in the sense that if one
trajectory has a location at time t, then other trajectories defined at that time will also
have a (possibly interpolated) location at time t. This transformation guarantees that
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the set of new locations interpolated in order to synchronise trajectories is of minimum
cardinality. Algorithm 4 describes this process. The time complexity of this algorithm
is O(|TS|2) where |TS| is the number of different time-stamps in the data set.

Algorithm 4 Trajectory synchronisation
1: Require: T = {T1, . . . , TN} a set of trajectories to be synchronised, where each
Ti ∈ T is of the form:

Ti = {(ti1, xi1, yi1), . . . , (tini , x
i
ni , y

i
ni)};

2: Let TS = {tij | (tij , xij , yij) ∈ Ti : Ti ∈ T } be all time-stamps from all locations of
all trajectories;

3: for all Ti ∈ T do
4: for all ts ∈ TS with ti1 < ts < ti

ni do
5: if location having time-stamp ts is not in Ti then
6: insert new location in Ti having the time-stamp ts and coordinates interpo-

lated from the two timewise-neighboring locations;
7: end if
8: end for
9: end for

6.3.2 Definition and computation of the distance

Definition 31 (Distance between trajectories). Consider a set of synchronised trajec-
tories T = {T1, . . . , TN} where each trajectory is written as

Ti = {(ti1, xi1, yi1), . . . , (tini , x
i
ni , y

i
ni)} .

The distance between trajectories is defined as follows. If Ti, Tj ∈ T are p%-
contemporary with p > 0, then

d(Ti, Tj) =
1

p

√√√√ ∑
t`∈ot(Ti,Tj)

(xi` − x
j
`)

2 + (yi` − y
j
` )

2

|ot(Ti, Tj)|2
.

If Ti, Tj ∈ T are 0%-contemporary but there is at least one subset of T

T k(ij) = {T ijk1 , T ijk2 , . . . , T ijk
nijk} ⊆ T

such that T ijk1 = Ti, T
ijk
nijk = Tj and T ijk` and T ijk`+1 are p`%-contemporary with p` > 0

for ` = 1 to nijk − 1, then

d(Ti, Tj) = min
T k(ij)

nijk−1∑
`=1

d(T ijk` , T ijk`+1)
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Otherwise d(Ti, Tj) is not defined.

The computation of the distance between every pair of trajectories is not exponential
as it could seem from the definition. Polynomial-time computation of a distance graph
containing the distances between all pairs of trajectories can be done as follows.

Definition 32 (Distance graph). A distance graph is a weighted graph where

(i) nodes represent trajectories,
(ii) two nodes Ti and Tj are adjacent if the corresponding trajectories are p%-

contemporary for some p > 0, and
(iii) the weight of the edge (Ti, Tj) is the distance between the trajectories Ti and Tj.

Now, given the distance graph for T = {T1, . . . , TN}, the distance d(Ti, Tj) for two
trajectories is easily computed as the minimum cost path between the nodes Ti and Tj , if
such path exists. The inability to compute the distance for all possible trajectories (the
last case of Definition 31) naturally splits the distance graph into connected components.
The connected component that has the majority of the trajectories must be kept, while
the remaining components represent outlier trajectories that are discarded in order to
preserve privacy. Finally, given the connected component of the distance graph having
the majority of the trajectories of T , the distance d(Ti, Tj) for any two trajectories
on this connected component is easily computed as the minimum cost path between
the nodes Ti and Tj . The minimum cost path between every pair of nodes can be
computed using the Floyd-Warshall algorithm [80] with computational cost O(N3), i.e.
in polynomial time.

6.3.3 Intuition and rationale of the distance

In order to deal with the time dimension, our distance measure applies a linear penalty
of 1

p to those trajectories that are p%-contemporary. This means that, the closer in time
are two trajectories, the shorter is our distance between both. It should be remarked
that we choose a linear penalty because the Euclidean distance is also linear in terms of
the spatial coordinates and the Euclidean distance is the spatial distance measure we
consider by default. Other distances and other penalties might be chosen, e.g. 1

p2
.

A problem appears when considering 0%-contemporary trajectories. How can two
non-overlapping trajectories be penalised? A well-known strategy is to give a weight
to the time dimension and another weight to the spatial dimension. By doing so,
the time distance and the spatial distance can be computed separately, and later be
merged using their weights. However, determining proper values for these weights is a
challenging task.

Anyway, the following lemma guarantees that, whenever we consider two trajectories
at minimum distance for clustering, they do have some overlap.
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Lemma 1. Any two trajectories in data set T at minimum distance are p%-
contemporary with p > 0.

Proof. Consider a trajectory Ti ∈ T and another trajectory Tj ∈ T at minimum
distance from Ti. Assume that Ti and Tj are not p%-contemporary with p > 0. Then,
since the distance between Ti and Tj is defined, according to Definition 31 a subset of
distinct trajectories T (ij) = {T ij1 , T ij2 , . . . , T ijnij} ⊆ T must exist such that T ij1 = Ti,
T ij
nij = Tj and T

ij
` and T ij`+1 are p`%-contemporary with p` > 0 for ` = 1 to nij − 1, and

d(Ti, Tj) =

nij−1∑
`=1

d(T ij` , T
ij
`+1) .

Then d(Ti, Tj) > d(T ij` , T
ij
`+1) for all ` from 1 to nij − 1 (strict inequality holds because

all trajectories in T (ij) are distinct). Thus, we reach the contradiction that d(Ti, Tj) is
not minimum. Hence, the lemma must hold.

6.4 Anonymisation methods

We present two anonymisation methods, called SwapLocations and ReachLocations, re-
spectively, which yield anonymised trajectories consisting of true original locations. The
first method is partially based on the microaggregation [68] of trajectories and partially
based on the permutation of locations. The second method is based on the permutation
of locations only. The main difference between the SwapTriples method [70] and the
two new methods we propose here is that the latter effectively guarantees trajectory
k-anonymity (SwapLocations) or location k-diversity (ReachLocations). To that end,
an original triple is discarded if it cannot be swapped randomly with another triple
drawn from a set of k − 1 other original triples.

Our two methods differ from each other in several aspects. The first method assumes
an unconstrained environment, while the second one considers an environment with mo-
bility constraints, like an underlying street or road network. SwapLocations effectively
achieves trajectory k-anonymity. ReachLocations provides higher utility by design, but
regarding privacy, it offers location k-diversity instead of trajectory k-anonymity. A
common feature of both methods is that locations in the resulting anonymised trajec-
tories are true, fully accurate original locations, i.e. no fake, generalised or perturbed
locations are given in the anonymised data set of trajectories.

6.4.1 The SwapLocations method

Algorithm 5 describes the process followed by the SwapLocations method in order
to anonymise a set of trajectories. First, the set of trajectories is partitioned into
several clusters. Then, each cluster is anonymised using the SwapLocations function
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in Algorithm 6. We should remark here that we only consider trajectories for which
the distance to other trajectories can be computed using the distance in Definition 31.
Otherwise said, given the distance graph G (Definition 32), our distance measure can
only be used within one of the connected components of G; obviously, we take the
trajectories in the largest connected component of G. It should also be remarked that
Algorithm 4 is only used to compute the distance between trajectories. Once a cluster C
is created, the anonymisation algorithm works over the original triples of the trajectories
in C, and not over the triples created during synchronisation.

We limit ourselves to clustering algorithms which try to minimise the sum of the
intra-cluster distances or approximate the minimum and such that the cardinality of
each cluster is k, with k an input parameter; if the number of trajectories is not a
multiple of k, one or more clusters must absorb the up to k − 1 remaining trajectories,
hence those clusters will have cardinalities between k + 1 and 2k − 1. This type of
clustering is precisely the one used in microaggregation [68]. The purpose of minimising
the sum of the intra-cluster distances is to obtain clusters as homogeneous as possible, so
that the subsequent independent treatment of clusters does not cause much information
loss. The purpose of setting k as the cluster size is to fulfill trajectory k-anonymity, as
shown in Section 6.5.1. We might employ any microaggregation heuristic for clustering
purposes (see details in Section 6.4.3 below).

Algorithm 5 Cluster-based trajectory anonymisation(T , Rt, Rs, k)
1: Require: (i) T = {T1, . . . , TN} a set of original trajectories such that d(Ti, Tj) is

defined for all Ti, Tj ∈ T , (ii) Rt a time threshold and Rs a space threshold, both
of them public;

2: Use any clustering algorithm to cluster the trajectories of T , while minimising
the sum of intra-cluster distances measured with the distance of Definition 31 and
ensuring that minimum cluster size is k;

3: Let C1, C2, . . . , CnT be the resulting clusters;
4: for all clusters Ci do
5: C?i = SwapLocations(Ci, Rt, Rs); // Algorithm 6
6: end for
7: Let T ? = C?1 ∪ · · · ∪ C?nT be the set of anonymised trajectories.

The SwapLocations function (Algorithm 6) begins with a random trajectory T in
C. The function attempts to cluster each unswapped triple λ in T with another k − 1

unswapped triples belonging to different trajectories such that: (i) the time-stamps of
these triples differ by no more than a time threshold Rt from the time-stamp of λ;
(ii) the spatial coordinates differ by no more than a space threshold Rs. If no k − 1

suitable triples can be found that can be clustered with λ, then λ is removed; otherwise,
random swaps of triples are performed within the formed cluster. Randomly swapping
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this cluster of triples guarantees that any of these triples has the same probability of
remaining in its original trajectory or becoming a new triple in any of the other k − 1

trajectories. Note that Algorithm 6 guarantees that every triple λ of every trajectory
T ∈ C will be swapped or removed.

Algorithm 6 SwapLocations(C,Rt, Rs)
1: Require: (i) C a cluster of trajectories to be transformed, (ii) Rt a time threshold

and Rs a space threshold;
2: Mark all triples in trajectories in C as “unswapped”;
3: Let T be a random trajectory in C;
4: for all “unswapped” triples λ = (tλ, xλ, yλ) in T do
5: Let U = {λ}; // Initialise U with {λ}
6: for all trajectories T ′ in C with T ′ 6= T do
7: Look for an “unswapped” triple λ′ = (tλ′ , xλ′ , yλ′) in T ′ minimising the intra-

cluster distance in U ∪ {λ′} and such that:

|tλ′ − tλ| ≤ Rt

0 ≤
√

(xλ′ − xλ)2 + (yλ′ − yλ)2 ≤ Rs ;

8: if λ′ exists then
9: U ← U ∪ {λ′};

10: else
11: Remove λ from T ;
12: Go to line 6 in order to analyse the next triple λ;
13: end if
14: end for
15: Randomly swap all triples in U ;
16: Mark all triples in U as “swapped”;
17: end for
18: Remove all “unswapped” triples in C;
19: Return C

The SwapLocations function specified by Algorithm 6 swaps entire triples, that
is, time and space coordinates. The following example illustrates the advantages of
swapping time together with space.

Example 1. Imagine John attended one day the political protests in Tahrir Square,
Cairo, Egypt, but he would not like his political views to become broadly known. As-
sume John’s trajectory is anonymised and published. Assume further that an adversary
knows the precise time John left his hotel in the morning, say 6:36 AM (e.g. because
the adversary has bribed the hotel concierge into recording John’s arrival and departure
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times). Now:

• If SwapLocations swapped only spatial coordinates, the adversary could re-
identify John’s trajectory as one starting with a triple (6:36 AM, x′h, y

′
h). Fur-

thermore, (x′h, y
′
h) must be a location within a distance Rs from the hotel coor-

dinates (xh, yh), although the adversary does not know the precise value of Rs.
The re-identified trajectory would contain all true timestamps of John’s original
trajectory (because they would not have been swapped), and spatial coordinates
within distance Rs of John’s really visited spatial coordinates. Hence, it would
be easy to check whether John was near Tahrir Square during that day. With-
out swapping times, privacy protection can only be obtained by taking Rs large
enough so that within distance Rs of the original locations visited by John there
are several semantically different spatial coordinates. To explain what we mean by
semantic difference, assume (x, y) is Tahrir Square and the trajectory anonymiser
guarantees that he has taken Rs large enough so that (x, y) could be swapped
with some spatial coordinates (x′, y′) off Tahrir Square; even if (x′, y′) turned out
to be still within Tahrir Square, John could claim to have been off Tahrir Square;
the adversary could not disprove such a claim, because in fact (x, y) could be at
a distance Rs from (x′, y′) and hence outside the Square. However, a large Rs

means a large total space distortion.

• If entire triples are swapped, as actually done by SwapLocations, the adversary
can indeed locate an anonymised trajectory containing (not necessarily starting
with) triple (6:36 AM, xh, yh). However, there is only a chance 1/k that this triple
was not swapped from another of the k−1 original trajectories with which John’s
original trajectory was clustered. Similarly, the other triples in the anonymised
trajectory containing (6:36 AM, xh, yh) have also most likely “landed” in that
anonymised trajectory as a result of a swap with some location in some of the
k − 1 original trajectories clustered with John’s. Hence, John’s trajectory is
cloaked with k − 1 other trajectories. We will prove in Section 6.5.1 that this
guarantees trajectory k-anonymity in the sense of Definition 26. In particular,
the triple (t, x, y) corresponding to John at Tahrir Square will appear in one
of the k anonymised trajectories, unless that triple has been removed by the
SwapLocations function because it was unswappable (the smaller Rt and Rs, the
more likely it is for the triple to be removed).

6.4.2 The ReachLocations method

The ReachLocations method, described in Algorithm 7, takes reachability constraints
into account: from a given location, only those locations at a distance below a threshold
following a path in an underlying graph (e.g., urban pattern or road network) are con-
sidered to be directly reachable. Enforcing such reachability constraints while requiring
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full trajectory k-anonymity would result in a lot of original locations being discarded.
To avoid this, trajectory k-anonymity is changed by another useful privacy definition:
location k-diversity.

Computationally, this means that trajectories are not microaggregated into clusters
of size k. Instead, each location is k-anonymised independently using the entire set of
locations of all trajectories. To do so, a cluster Cλ of “unswapped” locations is created
around a given location λ, i.e. λ ∈ Cλ. The cluster Cλ is constrained as follows: (i)
it must have the lowest intra-cluster distance among those clusters of k “unswapped”
locations that contain the location λ; (ii) it must have locations belonging to k different
trajectories; and (iii) it must contain only locations at a path from λ at most Rs long
and with time-stamps differing from tλ at most Rt. Then, the spatial coordinates
(xλ, yλ) are swapped with the spatial coordinates of some random location in Cλ and
both locations are marked as “swapped”. If no cluster Cλ can be found, the location
λ is removed from the data set and will not be considered anymore in the subsequent
anonymisation. This process continues until no more “unswapped” locations appear in
the data set.

It should be emphasised that, according to Algorithm 7, two successive locations
λij and λij+1 of an original trajectory Ti may be cloaked with respective sets of k − 1

locations belonging to different sets of k − 1 original trajectories; for this reason we
cannot speak of trajectory k-anonymity, see the example below.

Example 2. Consider k − 1 trajectories within city A, k − 1 trajectories within city
B and one trajectory TAB crossing from A to B. When applying ReachLocations, the
initial locations of TAB are swapped with locations of trajectories within A, whereas
the final locations of TAB are swapped with locations of trajectories within B. Imagine
that an adversary knows a sub-trajectory S of TAB containing one location λA in A

and one location λB in B. Assume λA and λB are not removed by ReachLocations
anonymisation. Now, the adversary will know that the anonymised trajectory T ?AB
corresponding to TAB is the only anonymised trajectory crossing from A to B. Thus,
there is no trajectory k-anonymity, even if the adversary will be unable to determine
the exact locations of TAB \S, because each of them has been swapped within a set of
k locations.

Algorithm 7 swaps only spatial coordinates instead of full triples. We show in the
example below that this is enough for ReachLocations to achieve location k-diversity (we
have shown above that it cannot achieve trajectory k-anonymity anyway). If swapping
time coordinates is not beneficial in terms of privacy guarantees, they should not be
swapped, because the fact that anonymised trajectories preserve the original sequence
of time-stamps of original trajectories increases their utility.

Example 3. Let us resume Example 1, but now assume that ReachLocations is used
instead of SwapLocations to anonymise trajectories. In this case, the adversary will find
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Algorithm 7 ReachLocations(T , Rt, Rs, k)
1: Require: (i) T = {T1, . . . , TN} a set of original trajectories, (ii) G a graph de-

scribing the paths between locations, (iii) Rt is a time threshold and Rs is a space
threshold, both of them public;

2: Let TL = {λij ∈ Ti : Ti ∈ T } contain all locations from all trajectories, where
λij = (tij , x

i
j , y

i
j) and the spatial coordinates (xij , y

i
j) are called a point;

3: Mark all locations in TL as “unswapped”;
4: Let T ? = ∅ be an empty set of anonymised trajectories;
5: while there exist trajectories in T do
6: Let Ti be a trajectory randomly chosen in T ;
7: for j = 1 to j = |Ti| do
8: if λij is “unswapped” then
9: Let Cij = {λ1, · · · , λk−1} be a cluster of locations in TL such that:

1. All locations in Cij are “unswapped”, with points different from (xij , y
i
j)

and no two equal points;

2. Points in Cij belong to trajectories in T \{Ti} and no two points belong
to the same trajectory;

3. For any λ ∈ Cij , it holds that:

(a) |tλ − tij | ≤ Rt

(b) If j > 1 there is a path in G between (xij−1, y
i
j−1) and (xλ, yλ);

(c) If j < |Ti| there is a path in G between (xλ, yλ) and (xij+1, y
i
j+1);

(d) The length of each path above is no more than Rs;

4. The sum of intra-cluster distances in Cij ∪ {λij} is minimum among
clusters of cardinality k − 1 meeting the previous conditions;

10: if such a cluster Cij does not exist then
11: Remove λij from Ti;
12: else
13: Mark λij as “swapped”;
14: With probability k−1

k :

1. Pick a random location λ ∈ Cij and mark it as “swapped”;

2. Swap the spatial coordinates (xij , y
i
j) of λij with the spatial coordi-

nates (xλ, yλ) of λ;

15: end if
16: end if
17: end for
18: T ? = T ? ∪ {Ti};
19: Remove Ti from T ;
20: end while
21: Return T ?.



6.4. Anonymisation methods 129

an anonymised trajectory starting with (6:36 AM,x′h,y
′
h). This anonymised trajectory

will contain all true timestamps of John’s original trajectory. However, the spatial
coordinates appearing in any location of this re-identified trajectory are John’s original
spatial coordinates with a probability at most 1/k. We will prove in Section 6.5.2 below
that this guarantees location k-diversity in the sense of Definition 28. If we want to
prevent the adversary from making sure that John visited Tahrir Square, we should
take Rs large enough (the discussion in Example 1 about the protection afforded by a
large Rs when time is not swapped is valid here).

6.4.3 Complexity of SwapLocations and ReachLocations

We first give a complexity assessment of SwapLocations and ReachLocations assuming
that the distance graph mentioned in Section 6.3.2 has been precomputed and is avail-
able. This is reasonable, because the distance graph needs to be computed only once,
while the anonymisation methods may need to be run several times (e.g. with different
parameters). Regarding SwapLocations, we have:

• Algorithm 5 can use any fixed-size microaggregation heuristic for clustering (e.g.
MDAV in [72]). Most microaggregation heuristics have quadratic complexity, that
is O(N2), where N is the number of trajectories.

• Algorithm 5 calls the procedure SwapLocations once for each resulting cluster,
that is, O(N/k) times.

• In the worst case, the complexity of procedure SwapLocations (Algorithm 6)
is proportional to the number of locations of the longest trajectory in C, say
O(nmax). For each location, a search of another location for swapping is per-
formed among the other k−1 trajectories. The number of candidates for swapping
is O((k − 1)nmax). Hence, the complexity of SwapLocations is O((k − 1)n2max).

• The total complexity of the method is thus

O(N2) +O(N/k) ·O((k − 1)n2max) = O(N2) +O(Nn2max) (6.3)

Regarding the complexity of ReachLocations, we have

• Algorithm 7 has an external loop which is called N times, where N is the number
of trajectories in T . For each trajectory, a swap is attempted for each of its
unswapped locations. Hence the algorithm performs O(Nnmax) swaps, where
nmax is the number of locations in the longest trajectory.

• Each swap involves forming a cluster which k − 1 locations selected from TL,
which takes time proportional to the total number of locations in TL, that is,
O(Nnmax).



130
Chapter 6. Microaggregation- and Permutation-Based Anonymisation of

Movement Data

• Hence, the total complexity of the method is O(N2n2max).

By comparing the last expression and Expression 6.3, we see that both SwapLo-
cations and ReachLocations are quadratic in N and quadratic in nmax, but ReachLo-
cations is slower. Such complexity motivates the following two comments related to
scalability:

• If the number of trajectories N in the original data set is very large, quadratic
complexity may be very time consuming. In this case, a good strategy is to
use some blocking technique to split the original data set into several subsets of
trajectories, each of which should be anonymised separately.

• nmax being large may be less problematic than N being large, provided that only
a small fraction of trajectories have nmax or close to nmax locations. If a lot of
trajectories are very long, a good strategy would be to split each of these into two
or more trajectories and anonymise them independently.

Finally, in case we add the time complexity of the computation of the distance
graph mentioned in Section 6.3.2 (which is O(N3) using the Floyd-Warshall algorithm),
the time complexities of both SwapLocations and ReachLocations become O(N3) +

O(Nn2max) and O(N3) +O(N2n2max), respectively.

6.5 Privacy guarantees

6.5.1 Privacy guarantees of SwapLocations

The main difference between the SwapTriples method in [70] and the SwapLocations
method here is that, in the latter, no original location remains unswapped in an
anonymised trajectory.

Proposition 2. Let S � TS be the adversary’s knowledge of a target original trajectory
TS and λ1, λ2, · · · , λ|S| be all triples in S. For every trajectory Ti, the probability that
the triple λ in S appears in the anonymised version T ?i of Ti produced by SwapLocations
is:

Pr(λ ∈ T ?i |λ ∈ S) =


1
k if TS and Ti lie in the same cluster

0 otherwise.

Proof. By construction of Algorithm 6, if TS and Ti do not lie in the same cluster, there
is no possibility of swapping triples between them. Hence, in this case, Pr(λ ∈ T ?i |λ ∈
S) = 0.

Let T1, T2, · · · , Tk ∈ T be k trajectories that are anonymised together in the same
cluster by the SwapLocations method. Without loss of generality, let us assume that
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TS = T1. By construction of Algorithm 6, for every 1 ≤ i ≤ k, Pr(λ ∈ T ?i |λ ∈ T1) is
0 if λ was removed, 1

k otherwise. Note that a swapping option is to swap a triple with
itself, that is, not to swap it. Since it does not make sense to consider removed triples
in S, we conclude that Pr(λj ∈ T ?i |λj ∈ T1) = 1

k , ∀1 ≤ j ≤ |S|, 1 ≤ i ≤ k and, in
consequence, Pr(λj ∈ T ?i |λj ∈ S) = 1

k , ∀1 ≤ j ≤ |S|, 1 ≤ i ≤ k.

Theorem 4. The SwapLocations method achieves trajectory k-anonymity.

Proof. By Proposition 2, any sub-trajectory S′ � S � T1 has the same probability of
being a sub-trajectory of T ?1 than of being a sub-trajectory of any of the k−1 trajectories
T ?2 , · · · , T ?k . Thus, given S, an adversary is not able to link T1 with T ?1 with probability
higher than 1

k . Therefore, SwapLocations satisfies
1
k -privacy according to Definition 25;

according to Definition 26, it also satisfies trajectory k-anonymity.

6.5.2 Privacy guarantees of ReachLocations

We show below that ReachLocations provides location k-diversity.

Proposition 3. Any triple λ in an original trajectory T appears in the anonymised
trajectory T ? corresponding to T obtained with ReachLocations if and only if λ was not
removed and was swapped with itself, which happens with probability at most 1

k .

Proof. Let us prove the necessity implication. By construction of Algorithm 7, any
triple λ whose spatial coordinates (point) cannot be swapped within a cluster C ∪ {λ}
containing k different points belonging to k different trajectories is removed and does
not appear in the set of anonymised trajectories. Further, the only way for a non-
removed triple λ ∈ T to remain unaltered in T ? is precisely that its point is swapped
with itself, which happens with probability 1

k . Therefore, to remain unaltered in T ?,
a triple in T needs to avoid removal and to have its point swapped with itself, which
happens with probability at most 1

k .
Now let us prove the sufficiency implication. Assume that λ = (t, x, y) ∈ T appears

in T ? without having been swapped with itself. Then, by construction of ReachLoca-
tions, λ ∈ T ? must have been formed as the result of swapping a triple (t, x′, y′) ∈ T
with a triple (t′, x, y) from another original trajectory, where (x′, y′) 6= (x, y). Buth then
T would contain two triples with the same time-stamp t and different spatial locations,
which is a contradiction.

Theorem 5. The ReachLocations method achieves location k-diversity.

Proof. Assume the adversary knows a sub-trajectory S of an original trajectory T .
The sequence of time-stamps in S allows the adversary to re-identify the anonymised
trajectory T ? corresponding to T (because the time-stamp sequence is preserved). By
Proposition 3, any triple λ ∈ T ? \ S belongs to T \ S with probability at most 1

k . Now,
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consider a triple λ = (t, x, y) ∈ T ?? \S, where T ?? is an anonymised trajectory different
from T ?. The probability that λ came to T ?? \ S from T \ S is the probability that
λ was swapped and swapping did not alter it. This probability is zero, because swaps
preserve time coordinates but take place only between triples having different space
coordinates. Hence, in terms of Definition 25, Prλ[T |S] ≤ 1

k for every triple (T, S, λ)

such that T ∈ T , S � T and λ 6∈ S.

Note that the previous proof also implies that, even if a triple λ = (t, x, y) 6∈ S is
shared by M > 1 anonymised trajectories, the probability of λ ∈ T \S remains at most
1
k . What can be inferred by the adversary, however, is that M original trajectories (in
general not the ones corresponding to the M anonymised trajectories) visited spatial
coordinates (x, y) at possibly different times. Indeed, (t, x, y) can be obtained by swap-
ping (t′, x, y) and (t, x′, y′) for any t′ such that |t′ − t| ≤ Rt and for any (x′, y′) 6= (x, y)

at path distance at most Rs. If M is the total number of anonymised trajectories, then
the adversary can be sure that original trajectory T visited spatial coordinates (x, y)

at some time t′ such that |t′ − t| ≤ Rt. Such inference by the adversary does not vio-
late location k-diversity: violation would require guessing both the spatial and temporal
coordinates of a triple in T \ S. Of course, the time threshold Rt must be taken large
enough so that the time coordinate t is sufficiently protected.

6.6 Experimental results and evaluation

We implemented SwapLocations and ReachLocations. SwapLocations performs clus-
tering of trajectories using the partitioning step of the MDAV microaggregation heuris-
tic [72]. We used two data sets in our experiments:

• Synthetic data set. We used the Brinkhoff’s generator [47] to generate 1,000 syn-
thetic trajectories which altogether visit 45,505 locations in the German city of
Oldenburg. Synthetic trajectories generated with the Brinkhoff’s generator have
also been used in [12, 166, 167, 228]. We used this data set mainly for comparing
our methods with (k, δ)-anonymity [12]. The number of trajectories being mod-
erate, we were able to run in reasonable time the methods to be compared with a
large number of different parameter choices. Another advantage is that the street
graph of Oldenburg was available, which is necessary to run ReachLocations. The
downside of this data set having a moderate number of trajectories is that these
are rather sparse, which causes the relative distortion in the anonymised data
set to be substantial, no matter the method used. Anyway, this is not a serious
problem to compare methods with each other.

• Real-life data set. We also used a real-life data set of cab mobility traces that were
collected in the city of San Francisco [188]. This data set consists of 536 files, each
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of them containing the GPS coordinates of a cab during a period of time. After a
filtering process, we obtained 4582 trajectories and 94 locations per trajectory on
average. The advantage of this data set over the synthetic one is that it contains a
larger number of trajectories and that these are real ones. Then, we show through
a real example how appropriate is our distance metric for trajectory clustering.
Also, we present utility measures on the SwapLocations method for this real-life
data set using different space thresholds. The weakness of this data set is that
it cannot be used for ReachLocations, because it does not include the underlying
street graph of San Francisco.

6.6.1 Results on synthetic data

For the sake of reproducibility, we indicate the parameters we used in Brinkhoff’s genera-
tor to generate our Oldenburg synthetic data set: 6 moving object classes and 3 external
object classes; 10 moving objects and 1 external object generated per timestamp; 100
timestamps; speed 250; and “probability” 1,000. This resulted in 1,000 trajectories con-
taining 45,405 locations. The maximum trajectory length was 100 points, the average
length was 45.4 locations, and the median length was 44 locations.

6.6.1.1 Implementation details of our methods

We have introduced a new distance measure between trajectories used by the SwapLo-
cations proposal during the clustering process. As mentioned in Section 6.4.1 above,
our distance function can only be used within one of the connected components of the
distance graph G. During the construction of the distance graph for the synthetic data
we found 11 connected components, 10 of them of size 1. Therefore, we removed these
10 trajectories in order to obtain a new distance graph with just one connected compo-
nent. In this way, we preserved 99% percent of all trajectories before the anonymisation
process. The removed trajectories were in fact trajectories of length one, i.e. with just
one location in each one.

The SwapLocations method has been implemented using the following simple mi-
croaggregation method for trajectories: first, create clusters of size k with minimum
intra-cluster distance and then disperse the up to k − 1 unclustered trajectories to ex-
isting clusters while minimising the intra-cluster distance. This algorithm incurs no
additional discarding of trajectories.

On the other hand, the ReachLocations method does not remove trajectories, unlike
the SwapLocations method. It does, however, remove non-swappable locations, which
causes the removal of any trajectory consisting of non-swappable locations only.
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6.6.1.2 Implementing (k, δ)-anonymity for comparison with our method

We compared our proposals with (k, δ)-anonymity [12]. Since (k, δ)-anonymity only
works over trajectories having the same time span, first a pre-processing step to partition
the trajectories is needed. Superimposing the begin and end times of the trajectories
through reduction of the time coordinate modulo a parameter π does not always yield
at least k trajectories having the same time span; it may also happen that a trajectory
disappears because the new reduced end time lies before the new reduced begin time.

We have used π = 3 which kept the maximum (and so discarded the minimum)
trajectories. From the 1,000 synthetic trajectories, 40 were discarded because the end
time was less than the begin time and 187 were discarded because there were at most 4
trajectories having the same time span. In total, 227 (22.7%) trajectories were discarded
just in the pre-processing step. The remaining 773 trajectories were in 32 sets having
the same time span, each set containing a minimum of 15 trajectories and 24 on average.

We performed (k, δ)-anonymisation for k = 2, 4, 6, 8, 10, and 15 and δ = 0,
1000, 2000, 3000, 4000 and 5000. Because of the pre-processing step, using a higher
k was impossible without causing a significant number of additional trajectories to be
discarded.

6.6.1.3 Utility comparison

The performance of our proposals strongly depends on the values of the time and space
threshold parameters, denoted as Rt and Rs, respectively. In practice, these values
must be chosen to maximise utility while affording sufficient privacy protection. Too
large thresholds reduce utility (large space distortion if Rs is too high and large time
distortion is Rt is too high), but too small thresholds reduce utility because of removal
of many unswappable locations. As a rule of thumb, as illustrated in Example 1, the
space threshold Rs must be sufficiently large so that within a radius Rs of any spatial
location there are sufficiently distinct locations (e.g. if (x, y) lies in Tahrir Square,
Cairo, there should be points outside the Square within a radius Rs of (x, y)).

In order to compute the total space distortion, a value for Ω must be chosen and this
can be a challenging task. Note that the value of Ω is application-dependent (e.g. for
applications where the distortion should measure the accuracy of trajectories Ω should
be zero so that only non-removed triples contribute to TotalSD, while for applications
that should avoid removing any triple Ω should be very high). For this reason we propose
to compare separately the following three utility properties: (i) total space distortion;
(ii) percentage of removed trajectories; and (iii) percentage of removed locations. To
do so, we set Ω = 0 when computing the total space distortion. Consequently, the
percentage of removed triples as well as the percentage of removed trajectories are
considered separately from the total space distortion.

It should be remarked that the computation of the total space distortion of the
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ReachLocations method is done using the Euclidean distance between locations rather
than the distance defined by the reachability constraints (distance on the underlying
network). Note that reachability constraints should be considered during the anonymi-
sation process but not necessarily when computing the total space distortion.

For successive anonymisations aimed at comparing the SwapLocations and ReachLo-
cations methods with (k, δ)-anonymity, we set Rt and Rs in a way to obtain roughly
the same total space distortion values as in (k, δ)-anonymity (cf. Table 6.1) with Ω = 0.
The idea is that, after assuring that the three methods achieve roughly the same total
space distortion, we will be able to focus on other utility properties like the percentage
of removed trajectories and the percentage of removed locations. It should be noted
that our comparison is not entirely fair for any of the three methods because all of them
are aimed at achieving different privacy notions. However, we believe that our results
are indicative of the weaknesses and the strengths of our proposals.

δ \ k 2 4 6 8 10 15
0 48e6 93e6 120e6 143e6 165e6 199e6

1,000 19e6 60e6 86e6 109e6 131e6 165e6
2,000 4e6 32e6 56e6 78e6 99e6 133e6
3,000 .9e6 14e6 32e6 52e6 71e6 104e6
4,000 .2e6 5e6 16e6 32e6 48e6 79e6
5,000 .03e6 2e6 7e6 18e6 31e6 58e6

Table 6.1: Total space distortion (TotalSD) of (k, δ)-anonymity for several parameter
values (e6 stands for ×106)

The above principle of equating the space distortions with (k, δ)-anonymity yields a
value for the space threshold Rs in each of SwapLocations and ReachLocations; however,
it does not constrain the time threshold, which we set at Rt = 100. Regarding Rs, we
set it to achieve the total space distortions of (k, δ)-anonymity for cluster size k =

{2, 4, 6, 8, 10, 15} and

δ = {0, 1000, 2000, 3000, 4000, 5000}

(parameter values considered in Table 6.1). In order to find such space thresholds
efficiently, we assume that the total space distortions of our methods define a mono-
tonically increasing function of the space threshold, i.e. the higher the space threshold,
the higher the total space distortion. Under this assumption, we perform a logarith-
mic search over the set of space thresholds defined by the interval [0, 106]. The reason
behind defining the maximum value for the space threshold as 106 is that it is high
enough to achieve low numbers of removed trajectories. Indeed, as shown in Figure 6.2,
for both methods there exists a value Rscutoff < 106 such that, for every space threshold
Rs > Rscutoff , neither the total space distortion nor the percentage of removed locations
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and removed trajectories significantly change. Table 6.2 and Table 6.3 show the values
of space thresholds used in each configuration of (k, δ)-anonymity for SwapLocations
and ReachLocations, respectively.
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Figure 6.2: Top, percentage of removed trajectories and locations with k = 10, Rt = 100

and several values of Rs for SwapLocations (SL) and ReachLocations (RL). Bottom,
total space distortion with k = 10, Rt = 100 and several values of Rs for SwapLocations
and ReachLocations

As it can be seen in Tables 6.2 and 6.3, we use the maximum value (106) of the space
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δ \ k 2 4 6 8 10 15
0 106 106 106 106 106 106

1,000 106 106 106 106 106 106

2,000 899 106 106 106 106 106

3,000 257 106 106 106 106 106

4,000 86 1390 106 106 106 106

5,000 19 681 2507 106 106 106

Table 6.2: Space thresholds used in SwapLocations to match the total space distortion
of each configuration of (k, δ)-anonymity

δ \ k 2 4 6 8 10 15
0 499875 106 106 106 106 106

1,000 25090 106126 270157 106 106 106

2,000 4780 52468 93717 151915 249999 106

3,000 749 37124 64801 95585 132857 238884
4,000 136 25540 51089 73088 94465 152862
5,000 57 18059 39061 58584 79101 113280

Table 6.3: Space thresholds used in ReachLocations to match the total space distortion
of each configuration of (k, δ)-anonymity

threshold for several configurations. This is because in those configurations the total
space distortion caused by the (k, δ)-anonymity could not be reached by our methods no
matter how much we increased the space threshold. Figure 6.3 explains this behaviour
by showing the values of total space distortion SwapLocations and ReachLocations
minus the total space distortion of (k, δ)-anonymity. With almost every configuration,
our methods have a total space distortion lower than the total space distortion of (k, δ)-
anonymity. In the case of SwapLocations, the total space distortion is even much lower.

In general, SwapLocations does not reach high values of the total space distortion
because it removes more locations than ReachLocations in order to achieve trajectory
k-anonymity. Note that removing locations does not increase the total space distortion
because we are considering Ω = 0. Tables 6.4 and 6.5 show in detail the percentage
of removed trajectories and the percentage of removed locations for different values of
k = {2, 4, 6, 8, 10, 15} and δ = {0, 1000, 2000, 3000, 4000, 5000}, for SwapLocations and
ReachLocations, respectively.

As it can be seen in Table 6.4, in general SwapLocations removes less trajectories
than (k, δ)-anonymity because SwapLocations can cluster non-overlapping trajectories.
Indeed, with (k, δ)-anonymity 227 trajectories were discarded in the pre-processing step
alone because their time span could not match the time span of other trajectories, and
additional outlier trajectories were discarded during clustering, up to a total 24% of
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Figure 6.3: Top: total space distortion of SwapLocations minus total space distortion of
(k, δ)-anonymity for several parameter configurations. Bottom: total space distortion of
ReachLocations minus total space distortion of (k, δ)-anonymity for several parameter
configurations. The space thresholds defined in Tables 6.2 and 6.3 have been used,
respectively.

discarded trajectories. However, SwapLocations removed up to 84% of all locations
in the worst cases and thus, it may not be suitable for applications where preserving
the number of locations really matters. SwapLocations removes any location whose
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swapping set U contains less than k locations, which is a relatively frequent event
when k trajectories with different lengths are clustered together. As the cluster size k
increases, the length diversity tends to increase and the removal percentage increases.
A simple way around the location removal problem is to create clusters that contain
trajectories with roughly the same length, even though this may result in a higher total
space distortion; higher space distortion is a natural consequence of clustering based on
the trajectory length rather than the trajectory distance.

Table 6.5 shows that ReachLocations removes few trajectories when δ is small and
k is large. The reason is that, for those parameterisations, (k, δ)-anonymity introduces
so much total space distortion that ReachLocations can afford taking the maximum
space threshold Rs = 106 without reaching that much distortion. Such a high space
threshold allows ReachLocations to easily swap spatial coordinates, so that very few
locations need to be removed. Furthermore, the trajectories output by ReachLocations
are consistent with the underlying city topology. As said above, the only drawback of
this method is that in general it does not provide trajectory k-anonymity; rather, it
provides location k-diversity.

δ \ k 2 4 6 8 10 15

T L T L T L T L T L T L

0 0 34 0 58 0 69 1 75 0 79 0 84

1000 0 34 0 58 0 69 1 75 0 79 0 84

2000 4 45 0 58 0 69 1 75 0 79 0 84

3000 11 62 0 58 0 69 1 75 0 79 0 84

4000 19 68 5 66 0 69 1 75 0 79 0 84

5000 32 78 20 73 4 72 1 75 0 79 0 84

Table 6.4: Percentage of trajectories (columns labeled with T) and locations
(columns labeled L) removed by SwapLocations when using time threshold 100,
k = {2, 4, 6, 8, 10, 15} and space thresholds that match the space distortion caused
by (k, δ)-anonymity with the previous k’s and δ = {0, 1000, 2000, 3000, 4000, 5000}.
Percentages have been rounded to integers for compactness.

6.6.1.4 Spatio-temporal range queries

As stated in Section 6.2.2, a typical use of trajectory data is to perform spatio-temporal
range queries on them. That is why we report empirical results when performing the
two query types described and motivated in Section 6.2.2: Sometime_Definitely_Inside
(SI) and Always_Definitely_Inside (AI). We accumulate the number of trajectories in
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δ \ k 2 4 6 8 10 15

T L T L T L T L T L T L

0 0 1 0 3 0 3 0 4 0 4 0 3

1000 0 2 0 3 0 3 0 4 0 5 0 3

2000 36 27 9 18 3 11 0 5 0 6 0 4

3000 74 38 33 39 18 28 6 21 2 13 0 7

4000 82 43 65 49 41 40 20 34 10 27 2 16

5000 84 60 84 53 60 52 40 44 27 35 10 27

Table 6.5: Percentage of trajectories (columns labeled with T) and locations
(columns labeled L) removed by ReachLocations when using time threshold 100,
k = {2, 4, 6, 8, 10, 15} and space thresholds that match the space distortion caused
by (k, δ)-anonymity with the previous k’s and δ = {0, 1000, 2000, 3000, 4000, 5000}.
Percentages have been rounded to integers for compactness.

a set of trajectories T that satisfy the SI or AI range queries using the SQL style code
below.

• Query Q1(T , R, tb, te):

SELECT COUNT (*) FROM T WHERE SI(T .traj, R, tb, te)

• Query Q2(T , R, tb, te):

SELECT COUNT (*) FROM T WHERE AI(T .traj, R, tb, te)

Then, we define two different range query distortions:

• SID(T , T ?) = 1
|ξ|
∑
∀<R,tb,te>∈ξ

|Q1(T ,R,tb,te)−Q1(T ?,R,tb,te)|
max (Q1(T ,R,tb,te),Q1(T ?,R,tb,te))

where ξ is a set of
SI queries as defined in Section 6.2.2 (definition of SI adapted to non-uncertain
trajectories).

• AID(T , T ?) = 1
|ξ|
∑
∀<R,tb,te>∈ξ

|Q2(T ,R,tb,te)−Q2(T ?,R,tb,te)|
max (Q2(T ,R,tb,te),Q2(T ?,R,tb,te))

where ξ is a set of
AI queries as defined in Section 6.2.2 (definition of AI adapted to non-uncertain
trajectories).

For our experiments with the synthetic data set, we chose random time intervals
[tb, te] such that 0 ≤ te − tb ≤ 10. Also, we chose random uncertain trajectories with a
randomly chosen radius 0 ≤ σ ≤ 750 as regionsR. Actually, 10 and 750 are, respectively,
roughly a quarter of the average duration and distance of all trajectories. Note that we
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used uncertain trajectories only as regions R; however, the methods we are considering
in this chapter all release non-uncertain trajectories.

Armed with these settings, we ran 100, 000 times both queries Q1 and Q2 on the
original data set and the anonymised data sets provided by SwapLocations, ReachLo-
cations, and (k, δ)-anonymity; that is, we took a set ξ with |ξ| = 100, 000. The ideal
range query distortion would be zero, which means that query Qi for i ∈ 1, 2 yields
the same result for both the original and the anonymised data sets; in practice, zero
distortion is hard to obtain. Therefore, in order to compare our methods against (k, δ)-
anonymity, we use the same parameters of the previous experiments (Tables 6.1, 6.2,
and 6.3). We show in Tables 6.6 and 6.7 a comparison of SwapLocations, respectively
ReachLocations, against (k, δ)-anonymity in terms of SID and AID.

It can be seen from Table 6.6 that SwapLocations performs significantly better than
(k, δ)-anonymity for every cluster size and δ ≤ 3000. On the other hand, Table 6.7 shows
that ReachLocations outperforms (k, δ)-anonymity only for δ up to roughly 2000. Not
surprisingly, SwapLocations offers better performance than ReachLocations, because
the latter must deal with reachability constraints. It is also remarkable that ReachLo-
cations performs much better in terms of SID than in terms of AID. The explana-
tion is that, while (k, δ)-anonymity and SwapLocations operate at the trajectory level,
ReachLocations works at the location level.

We conclude that, according to these experiments, our methods perform better
than (k, δ)-anonymity regarding range query distortion for values of δ up to 2000. The
performance for larger values of δ is less and less relevant: indeed, when δ →∞, (k, δ)-
anonymity means that no trajectory needs to be anonymised and hence the anonymised
trajectories are the same as the original ones.

6.6.2 Results on real-life data

The San Francisco cab data set [188] we used consists of several files each of them
containing the GPS information of a specific cab during May 2008. Each line within a
file contains the space coordinates (latitude and longitude) of the cab at a given time.
However, the mobility trace of a cab during an entire month can hardly be considered
a single trajectory. We used big time gaps between two consecutive locations in a cab
mobility trace to split that trace into several trajectories. All trajectory visualisations
shown in this Section were obtained using Google Earth.

For our experiments we considered just one day of the entire month given in the
real-life data set, but the empirical methodology described below could be extended to
several days. In particular, we chose the day between May 25 at 12:04 hours and May 26
at 12:04 hours because during this 24-hour period there was the highest concentration
of locations in the data set. We also defined the maximum time gap in a trajectory as 3
minutes; above 3 minutes, we assumed that the current trajectory ended and that the
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δ \ k 2 4 6 8 10 15

S A S A S A S A S A S A

0 34 29 31 14 36 16 36 13 37 13 43 14

1000 24 20 24 8 28 10 27 8 28 9 41 14

2000 18 14 18 4 20 3 20 2 27 6 39 10

3000 8 3 11 −2 13 0 16 −1 21 4 36 10

4000 −6 −7 6 −6 9 −5 11 −4 17 2 30 5

5000 −22 −19 1 −9 3 −9 7 −7 14 −2 27 2

Table 6.6: Range query distortion of SwapLocations compared to (k, δ)-anonymity for
SID (columns labeled with S) and AID (columns labeled with A) when using k =

{2, 4, 6, 8, 10, 15} and space thresholds that match the space distortion caused by (k, δ)-
anonymity with the previous k’s and δ = {0, 1000, 2000, 3000, 4000, 5000}. In this table,
a range query distortion x obtained with SwapLocations and a range query distortion y
obtained with (k, δ)-anonymity are represented as the integer rounding of (y−x) ∗ 100.
Hence, values in the table are positive if and only if SwapLocations outperforms (k, δ)-
anonymity.

δ \ k 2 4 6 8 10 15

S A S A S A S A S A S A

0 34 25 28 12 33 10 32 5 31 5 37 6

1000 25 19 21 6 24 4 23 1 25 2 35 5

2000 10 10 8 −7 17 −3 19 −3 23 −3 33 4

3000 −4 2 0 −12 9 −12 13 −5 19 −4 29 1

4000 −11 −6 −6 −18 −2 −17 3 −16 13 −6 26 −3

5000 −14 −5 −10 −22 −8 −25 −4 −21 8 −14 20 −5

Table 6.7: Range query distortion of ReachLocations compared to (k, δ)-anonymity for
SID (columns labeled with S) and AID (columns labeled with A) when using k =

{2, 4, 6, 8, 10, 15} and space thresholds that match the space distortion caused by (k, δ)-
anonymity with the previous k’s and δ = {0, 1000, 2000, 3000, 4000, 5000}. In this table,
a range query distortion x obtained with ReachLocations and a range query distortion y
obtained with (k, δ)-anonymity are represented as the integer rounding of (y−x) ∗ 100.
Hence, values in the table are positive if and only if ReachLocations outperforms (k, δ)-
anonymity.
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next location belonged to a different trajectory. This choice was based on the average
time gap between consecutive locations in the data set, which was 88 seconds; hence, 3
minutes was roughly twice the average. In this way, we obtained 4582 trajectories and
94 locations per trajectory on average.

The next step was to filter out trajectories with strange features (outliers). These
outliers could be detected based on several aspects like velocity, city topology, etc. We
focused on velocity and defined 240 km/h as the maximum speed that could be reached
by a cab. Consequently, the distance between two consecutive locations could not be
greater than 12 km because the maximum within-trajectory time gap was 3 minutes.
This allowed us to detect and remove trajectories containing obviously erroneous lo-
cations; Figure 6.4 shows one of these removed outliers where a cab appeared to have
jumped far into the sea probably due to some error in recording its GPS coordinates.
Altogether, we removed 45 outlier trajectories and we were left with a data set of 4547
trajectories with an average of 93 locations per trajectory. Figure 6.5 shows the ten
longest trajectories (in number of locations) in the final data set that we used.

Figure 6.4: Example of an outlier trajectory
in the original real-life data set

Figure 6.5: Ten longest trajectories in the
filtered real-life data set

6.6.2.1 Experiments with the distance metric

We propose in this chapter a new distance metric designed specifically for clustering
trajectories. Our distance metric considers both space and time, dealing even with
non-overlapping or partially-overlapping trajectories. Contrary to the synthetic data
where 10 trajectories had to be removed because the distances to them could not be
computed, in this real-life data set our distance function could be computed for every
pair of trajectories.

Figure 6.6 shows two trajectories identified by our distance metric as the two closest
ones in the data set. The two cabs moved around a parking lot and therefore stayed
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very close to one another in space. Also in time both trajectories were very close: one
of them was recorded between 12:00:49 hours and 13:50:47 hours, while the other was
recorded between 12:00:25 hours and 13:52:30 hours. Therefore, both trajectories were
correctly identified by our distance metric as being close in time and space; they could
be clustered together with minimum utility loss for anonymisation purposes.

To compare, Figure 6.7 shows two trajectories identified by the Euclidean distance
as the two closest ones in the data set. These trajectories are located in a parking lot
inside San Francisco Airport and, spatially, they are closer than the two trajectories
shown in Figure 6.6. However, one of these trajectories was recorded between 24:42:55
hours and 24:55:59 hours, while the other was recorded between 19:05:29 hours and
19:06:15 hours. Hence, they should not be in the same cluster, because an adversary
with time knowledge can easily distinguish them.

6.6.2.2 Experiments with the SwapLocations method

The ReachLocations method cannot be used when the graph of the city is not provided.
Hence, in the experiments with the San Francisco real data we just considered the
SwapLocations method. As in the experiments with synthetic data, we set Ω = 0

during the computation of the total space distortion. Figure 6.8 shows the values of
total space distortion given by the SwapLocations for different space thresholds and
different cluster sizes.

Two other utility properties we are considering in this work are: percentage of
removed trajectories and percentage of removed locations. Table 6.8 shows the values
obtained with the SwapLocations method for both utility properties.

Finally, Table 6.9 reports the performance of SwapLocations regarding spatio-
temporal range queries. We picked random time intervals of length at most 20 minutes.
Also, random uncertain trajectories with uncertainty threshold of size at most 7 km
were chosen as the regions. Analogously to the experiments with the synthetic data set,
20 and 7 are roughly a quarter of the average duration and distance of all trajectories,
respectively. It can be seen that the SwapLocations method provides low range query
distortion for every value of k when the space threshold is small, i.e. when the total
space distortion is also small. However, the smaller the space threshold, the larger
the number of removed trajectories and locations (see Table 6.8). This illustrates the
trade-off between the utility properties considered.

6.7 Conclusions

In this chapter, we have presented two permutation-based heuristic methods to
anonymise trajectories with the common features that: (i) places and times in the
anonymised trajectories are true original places and times with full accuracy; (ii) both
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Figure 6.6: The two closest trajectories in the real-life data set according to our distance
metric

Figure 6.7: The two closest trajectories in the real-life data set according to the Eu-
clidean distance
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Figure 6.8: Total space distortion (km) for SwapLocations using several different space
thresholds and cluster sizes on the real-life data set

Rs \ k 2 4 6 8 10 15

T L T L T L T L T L T L

1 23 43 40 64 49 71 58 74 62 77 71 81

2 19 29 34 47 42 54 50 58 54 60 50 66

4 14 17 27 29 35 35 40 40 45 41 54 49

8 9 10 19 19 25 25 31 29 34 31 42 38

16 5 7 11 16 17 22 20 27 23 30 32 38

32 1 7 2 15 3 22 4 27 5 30 8 38

64 0 6 0 15 0 22 0 27 0 30 0 38

128 0 6 0 15 0 22 0 27 0 30 0 38

Table 6.8: Percentage of trajectories (columns labeled with T) and locations (columns
labeled with L) removed by SwapLocations for several values of k and several space
thresholds Rs on the real-life data set. Percentages have been rounded to integers for
compactness.



6.7. Conclusions 147

methods can deal with trajectories with partial or no time overlap, thanks to a new
distance also introduced in this paper. The first method aims at trajectory k-anonymity
while the second method takes reachability constraints into account, that is, it assumes
a territory constrained by a network of streets or roads; to avoid removing too many lo-
cations, the second method changes its privacy ambitions from trajectory k-anonymity
to location k-diversity.

Both methods use permutation of locations, and the first method uses also trajectory
microaggregation. There are few counterparts in the literature comparable to the first
method, and virtually none comparable to the second method. Experimental results
show that, for most parameter choices and for similar privacy levels, our methods offer
better utility than (k, δ)-anonymity.
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Rs \ k 2 4 6 8 10 15

S A S A S A S A S A S A

1 13 22 18 27 20 29 19 29 24 31 25 34

2 16 24 25 34 26 35 24 35 27 37 27 37

4 18 25 30 37 33 41 34 42 38 46 38 45

8 21 27 34 40 38 44 40 46 44 50 48 54

16 20 26 36 42 42 47 45 50 50 54 53 58

32 21 26 39 44 45 49 48 53 53 57 58 62

64 20 25 39 44 46 50 51 54 54 57 61 64

128 21 26 39 44 48 50 51 56 54 58 61 64

Table 6.9: Range query distortion caused by SwapLocations on the real-life data set for
SID (columns labeled with S) and AID (columns labeled with A), for several values of k
and several space thresholds Rs. In this table, a range query distortion x is represented
as the integer rounding of x ∗ 100 for compactness.
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Conclusions

This chapter summarises the contributions of the present dissertation. In addition, it
sketches some lines for future work that arise from either partially reached goals or
expected improvements.

Contents
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In this thesis we have focussed on security, privacy, and scalability issues in the RFID
technology. We have considered RFID identification protocols based on symmetric key
cryptography, which seem to be the most suitable for low-cost RFID tags. We have
also dealt with the challenges behind measuring the distance between tags and readers
in order to improve the security of any RFID identification protocol. Since the RFID
technology is becoming more and more popular, we noticed that there is an increasing
need for new trajectory anonymisation algorithms. For this reason, the last contribution
in this dissertation is devoted to this subject.

7.1 Contributions

In more detail, our contributions are:

1. We have presented a communication-efficient protocol for collaborative RFID
readers to privately identify RFID tags. With the presented protocol, the cen-
tralised management of tags can be avoided, along with bottlenecks and undesired
delays.

2. We have presented a novel protocol that uses location and time of arrival pre-
dictors to improve the efficiency of the widely accepted IRHL scheme. We have
shown that our protocol outperforms previous proposals in terms of scalability
whilst guaranteeing the same level of privacy and security.
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3. We have contributed to the design of distance-bounding protocols by: (i) providing
a way to compute an upper bound on the distance-fraud probability, which is
useful for analysing previous protocols and designing future ones; (ii) re-analysing
the mafia fraud probability of the Kim and Avoine protocol [126]; (iii) proposing a
new distance-bounding protocol that strikes a better balance than all previously
published distance-bounding protocols between memory consumption, distance
fraud resistance, and mafia fraud resistance.

4. We have presented two permutation-based heuristic methods to anonymise tra-
jectories with the common features that: (i) places and times in the anonymised
trajectories are true original places and times with full accuracy; (ii) both meth-
ods can deal with trajectories with partial or no time overlap, thanks to a new
distance also introduced in this dissertation. The first method aims at trajectory
k-anonymity while the second method takes reachability constraints into account,
that is, it assumes a territory constrained by a network of streets or roads; to avoid
removing too many locations, this second method changes its privacy ambitions
from trajectory k-anonymity to location k-diversity.

7.2 Publications

The main publications supporting the content of this thesis are the following:

• Rolando Trujillo-Rasua, Benjamin Martin, and Gildas Avoine. The Poulidor
distance-bounding protocol. In The 6th Workshop on RFID Security and Privacy
- RFIDSEC 2010, pages 239–257, 2010.

• Josep Domingo-Ferrer, Michal Sramka, and Rolando Trujillo-Rasua. Privacy-
preserving publication of trajectories using microaggregation. In Proceedings
of the SIGSPATIAL ACM GIS 2010 International Workshop on Security and
Privacy in GIS and LBS, SPRINGL 2010, San Jose, California, USA, 2 November
2010. ACM, pages 26–33, 2010.

• Rolando Trujillo-Rasua and Agusti Solanas. Efficient probabilistic communication
protocol for the private identification of RFID tags by means of collaborative
readers. Computer Networks, 55(15):3211–3223, 2011.

• Rolando Trujillo-Rasua and Agusti Solanas. Scalable trajectory-based protocol
for RFID tags identification. In The IEEE International Conference on RFID-
Technologies and Applications - RFID-TA, pages 279–285, 2011.

• Josep Domingo-Ferrer and Rolando Trujillo-Rasua. Microaggregation- and
permutation-based anonymization of movement data. Information Sciences,
http://dx.doi.org/10.1016/j.ins.2012.04.015.

http://dx.doi.org/10.1016/j.ins.2012.04.015
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• Rolando Trujillo-Rasua, Agusti Solanas, Pablo A. Pérez-Martínez and Josep
Domingo-Ferrer. Predictive protocol for the scalable identification of RFID tags
through collaborative readers. Computers in Industry, http://dx.doi.org/10.
1016/j.compind.2012.03.005.

• Josep Domingo-Ferrer and Rolando Trujillo-Rasua. Anonymization of tra-
jectory data. 7th Joint UNECE/Eurostat Work Session on Statistical
Data Confidentiality, Tarragona, Catalonia, 26-28 October 2011. Published
at http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/
2011/32_Domingo-Trujillo.pdf.

Other publications co-authored by the candidate and related to RFID systems, but
not included in this thesis, are listed below:

• Albert Fernàndez-Mir, Rolando Trujillo-Rasua, Jordi Castellà-Roca and Josep
Domingo-Ferrer. Scalable RFID authentication protocol supporting ownership
transfer and controlled delegation. In The 7th Workshop on RFID Security and
Privacy - RFIDSEC 2011, Amherst, Massachusetts (USA), pages 147–162, Jun
2011.

• Rolando Trujillo-Rasua, Antoni Martínez-Ballesté and Agusti Solanas. Revisión
de protocolos para la identificación escalable, segura y privada en sistemas RFID.
5as Jornadas Científicas sobre RFID, Tarragona, Catalonia, 2011. Published at
http://crises2-deim.urv.cat/articles/index/type/conferences#672.

7.3 Future work

Next, we sketch possible lines for future work in the same order in which we have
presented our main contributions.

1. Our first proposal based on collaborative readers (see Chapter 3) opens at least
the following research issues: (i) study the effect of the number of neighbours, (ii)
propose methods to dynamically vary p so as to adapt it to tag movements, (iii)
propose hybrid methods that mix hash-based solutions and tree-based solutions
with collaborative readers.

2. In Chapter 4 we partially tackle the second issue explained above by proposing
some algorithms aimed at location prediction. However, those predictors may
work well in some scenarios, but their performance decreases in others. Although
we have provided some practical implementations for the predictors, the definition
of our protocol is flexible enough to accept the use of any location predictor. Due
to the fact that the efficiency of our proposal highly depends on the accuracy of

http://dx.doi.org/10.1016/j.compind.2012.03.005
http://dx.doi.org/10.1016/j.compind.2012.03.005
http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2011/32_Domingo-Trujillo.pdf
http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2011/32_Domingo-Trujillo.pdf
http://crises2-deim.urv.cat/articles/index/type/conferences#672
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the predictors we plan to study and compare a variety of predictors in different
scenarios in the future.

3. Chapter 5 introduces the graph-based protocol concept, which in turn suggests
lines for further work. First of all, an interesting question is to know if there are
graph-based protocols that behave still better than the one presented here. In
particular, if the number of rounds is not a critical parameter, prover and verifier
may be allowed to increase the number of rounds while keeping a 2n-node graph.
This means that some nodes may be used twice. In such a case, the security
analysis provided in this paper must be refined. On the other hand, although a
bound on the distance fraud success probability is provided, calculating the exact
probability of success is still cumbersome.

4. Regarding trajectory anonymisation, the future work will be directed towards de-
signing trajectory anonymisation methods aimed at achieving trajectory p-privacy
(see Definition 25), but discarding less locations than the SwapLocations method.
Also, finding trajectory anonymisation methods for constrained territories with
better utility than ReachLocations is an open challenge.
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