
YA-TRAP: Yet Another Trivial RFID Authentication Protocol

Gene Tsudik
CS Department, University of California, Irvine

Email: gts AT ics.uci.edu

Abstract

Security and privacy in RFID systems is an impor-
tant and active research area. A number of challenges
arise due to the extremely limited computational, stor-
age and communication abilities of a typical RFID tag.
This work describes a simple technique for inexpensive
untraceable identification of RFID tags. The proposed
protocol (called YA-TRAP) involves minimal interac-
tion between a tag and a reader and places low com-
putational burden on the tag (a single keyed hash). It
also imposes low computational load on the back-end
server.

1. Introduction

RFID tags are rapidly becoming ubiquitous. They are
expected to replace barcodes as the means of product
or item identification. RFIDs, unlike barcodes, do not
require a line-of-sight channel and their smaller form
factor takes up less valuable packaging “real estate”.
However, their proliferation into many spheres of ev-
eryday life raises numerous privacy-related concerns.
One of the main issues is tracking of RFID-equipped
items. While tracking RFID tags is typically one of the
key features and goals of a legitimate RFID system,
unauthorized tracking of RFID tags by rogue readers is
viewed as a major privacy threat.

This paper describes a simple technique (called YA-
TRAP) for inexpensive untraceable identification of
RFID tags. Untraceable means that it is computation-
ally difficult to infer – from interactions with a tag –
information about the identity of the tag or link mul-
tiple manifestations of the same tag. YA-TRAP is
inexpensive, requiring one light-weight cryptographic
operation on the tag and storage for one key. It is par-
ticularly well-suited for the batch mode of tag identi-
fication (see below for details). Furthermore, real-time
computational load on the back-end sever is minimal
due to the pre-computation technique described below.

2. Operating Environment

The legitimate entities are: tags, readers and servers.
A reader is a device querying tags for identification in-
formation. A server is a trusted entity that knows and
maintains all information about tags, their assigned
keys, etc. A server is assumed to be physically se-
cure and not attackable. Multiple readers are assigned
to a single server which only engages in communica-
tion with its constituent readers. For simplicity, we
assume a single logical server that might resolve to
multiple physically replicated servers. All communica-
tion between server and readers is assumed to be over
private and authentic channels. Furthermore, servers
and readers maintain loosely synchronized clocks. Both
readers and server have ample storage, computational
and communication abilities. (However, in some cases,
readers may not be able to communicate with servers
in real time; see below.) We assume that a tag has
no clock and small amounts of ROM and non-volatile
RAM With power supplied by a reader a tag is can
perform a modest amount of computation and com-
mit any necessary state – of small constant length –
to non-volatile storage. The adversary, in our context,
can be either passive or active: it can corrupt or, at-
tempt to impersonate, any entity and we assume that
its primary goal is to track RFID tags.

3. Non-Security Goals

As usual, our goals are to minimize everything, includ-
ing: (1) non-volatile RAM on the tag, (2) ROM on the
tag (both code and data), (3) tag computation, (4) # of
messages & rounds in reader-tag interaction, (5) mes-
sage size in reader-tag interaction, (6) server real-time
computation, and (7) server storage

While all cost factors matter, the first three directly
influence tag cost and are thus more important than
the rest. We also need to avoid features currently im-
practical for most RFID tags, such as: public key cryp-
tography, tamper-resistant shielding or an on-board
clock.

4. Modes of Operation

We consider two modes of tag identification: real-time
and batch. The former is the mode typically considered
in the literature: it involves on-line contact between the
reader and the server, in order to quickly authenticate
(or identify) the tag in question. If immediate feedback
about a tag is needed (as, for example, in popular re-
tail or library check-out scenarios), the server must be
contacted in real time. In other applications, such as
inventory control, where readers are mobile while items
equipped with tags are stationary, batch mode can be
used, whereby a reader scans numerous tags, collects
replies and sometime later performs their identification
in bulk.

Clearly, batch mode is only relevant in settings
where there is no concern about fraudulent tags,
whereas, emphasis is on security against potentially
fraudulent readers. However, we consider it to be an
important point on the overall design space of RFID se-
curity techniques. In particular, if the server is simply
not available (e.g., unreachable or overloaded) or if mo-
bile/wireless readers need to conserve battery power1,
batch mode becomes quite attractive.

5. Tag Requirements

Each tag RFIDi is initialized with at least the follow-
ing values: Ki, T0, and Tmax.

Ki is a tag-specific value that serves as both: (1) tag
identifier, and (2) cryptographic key. Thus, its size (in
bits) must be the greater of that required to uniquely
identify a tag (i.e., based on the total number of tags)
and that required to serve as a sufficiently strong cryp-
tographic key for the purposes of Message Authentica-
tion Code (MAC) computation. In practice, a 160-bit
Ki will likely suffice.

T0 is the initial timestamp assigned to the tag. In a
most likely scenario, T0 can be the timestamp of man-
ufacture. T0 need not be tag-unique; an entire batch
of tags can be initialized with the same value. The bit-
size of T0 depends on the desired granularity of time
and the number of times a tag can be authenticated.
Tmax can be viewed as the top value for the timestamp.
Like T0, Tmax does not need to be unique, e.g., a batch
of tags can share this value.

Each tag is further equipped with a sufficiently
strong, uniquely seeded pseudo-random number gen-
erator (PRNG). In practice, it can be resolved as an
iterated keyed hash (e.g., HMAC) started with a ran-
dom secret seed and keyed on Ki. For a tag RFIDi,

1Contacting a server for each scanned tag can be very
communication-intensive, much more so than storing all tag
replies and batching them later.

PRNGj
i denotes the j-th invocation of the (unique)

PRNG of that tag. No synchronization whatsoever is
assumed as far as PRNG-s on the tags and either read-
ers or servers. In other words, given a value PRNGj

i ,
no entity (including a server) can recover Ki or any
other information identifying RFIDi. Similarly, given
two values PRNGj

i and PRNGk
j , deciding whether

i = j is computationally hard for any entity.

6. Overview

The main idea of our proposal is the use of mono-
tonically increasing timestamps to provide tracking-
resistant (anonymous) tag authentication. The use of
timestamps is motivated by the old result of Herzberg,
et al. [1], which we briefly summarize next.

The work in [1] considered anonymous authentica-
tion of mobile users who move between domains, e.g.,
in a GSM cellular network or a wired Kerberos-secured
internetwork. Their technique involves a remote user
identifying itself to the host domain by means of an
ephemeral userid. An ephemeral userid is computed as
a collision-resistant one-way hash of current time and
a (secret) permanent userid.

A trusted server in the user’s home domain main-
tains a periodically2 updated hash table where each
row corresponds to a traveling user. (The table can
be either pre-computed or computed as needed.) Each
row contains a permanent userid and a corresponding
ephemeral userid. When a request from a foreign agent
(e.g., Kerberos AS/TGS in a remote domain or VLR in
GSM setting) comes in, the home domain server looks
up the ephemeral userid in the current table. (Since
hash tables are used, the lookup cost is constant.) As-
suming that timestamp used by the (authentic) travel-
ing user to compute the ephemeral userid is reasonably
recent (accurate), the hash table lookup is guaranteed
to succeed. This allows a traveling user to be authen-
ticated while avoiding any tracing by foreign agents or
domains.

One of the main advantages of this approach is that
the home domain server does not need to compute any-
thing on demand, as part of each request processing.
Instead, it pre-computes the current hash table and
waits for requests to come in. The cost of processing
a request amounts to a table lookup (constant cost)
which is significantly cheaper than a similar approach
using nonces or random challenges. In the latter case,
the server would need to compute an entire table on-
the-fly in order to identify the traveling user. As time
goes by, an ephemeral userid table naturally ‘expires’

2The length of the update interval is a system-wide parame-
ter, e.g., one hour.

and gets replaced with a new one. This is the main
feature we would like to borrow for tag authentication
purposes.

Although the technique from [1] works well for trav-
eling/mobile users, it is not directly applicable to the
envisaged RFID environment. First, a mobile user
can be equipped with a trusted personal timing device
which can be as simple as a wristwatch or as sophisti-
cated as a PDA. (Moreover, even without any trusted
device, a human user can always recognize grossly in-
correct time, e.g., that which is far into the future.)
Such a device can be relied upon to produce reason-
ably accurate current time. An RFID tag, on the other
hand, cannot be expected to have a clock. Thus, it is
unable to distinguish among a legitimate and a grossly
inaccurate timestamp.

However, if the tag keeps state of the last times-
tamp it “saw” (assuming it was legitimate), then it
can distinguish between future (valid) and past (in-
valid) timestamps. We capitalize on this observation
and rely on readers to offer a putatively valid times-
tamp to the tag at the start of the identification pro-
tocol. A tag compares the timestamp to the stored
timestamp value. If the former is strictly greater than
the latter, the tag concludes that the new timestamp is
probably valid and computes a response derived from
its permanent key and the new timestamp. A tag thus
never accepts a timestamp earlier than the one stored.
However, to protect against narrowing attacks3 , even
if the timestamp supplied by the reader pre-dates the
one stored, the tag needs to reply with a value indis-
tinguishable from a normal reply (i.e., a keyed hash
over a valid timestamp). In such cases, the tag replies
with a random value which is meaningless and cannot
be traced to the tag even by the actual server.

7. YA-TRAP Protocol

The protocol is illustrated below.
The important part of the protocol encompasses

steps 1-3. It consists of only two rounds and a total
of two messages, with the size of the first message de-
termined by Tr and the second – by Hr. In each case,
the size is no greater than, say, 160 bits.

Recall that we assume private and authentic chan-
nels between readers and the back-end server. More-
over, a server is assumed to “talk” only to non-
compromised (non-malicious) readers. This pertains to
steps 4 and 6 above. Note also that the specifics of step

3Informally, a narrowing attack occurs when the adversary
queries a tag with a particular timestamp and then later tries
to identify the same tag by querying a candidate tag with a
timestamp slightly above the previous one.

1 Tag ←− Reader: Tr

2 Tag:

[2.2] if ((Tr − Tt) ≤ 0)) OR (Tr > Tmax)

Hr = PRNGj
i

[2.3] else Tt = Tr , Hr = HMACKi
(Tt)

3 Tag −→ Reader: Hr

In real-time mode, the following steps take place immedi-
ately following Step 3. In batch mode, they are performed
later.

4 Reader −→ Server: Tr, Hr

5 Server:

[5.1] Let s = LOOKUP (HASH TABLETr , Hr)

[5.2] If (s == −1) MSG=TAG-ERROR

[5.3] Else MSG = G(Ks) (or MSG = ”VALID”)

6 Server −→ Reader: MSG

5.3 depend on the application requirements. If the ap-
plication allows genuine readers to identify/track valid
tags, the server returns a meta-id of the tag: G(Ks)
where G(.) is a suitable cryptographic hash with the
usual features. Otherwise, it suffices to inform the
reader that the tag in question is valid.

In batch mode, the reader interrogates a multitude
of tags, collects their responses and, at a later time,
off-loads the collected responses, along with the corre-
sponding Tr value(s)4 to the server. The server then
needs to identify the tags. In this situations, YA-
TRAP is highly advantageous. Even currently most ef-
ficient techniques such as the MSW protocol [2], require
the server to perform O(logn) pseudo-random function
(PRF) operations to identify a single tag. This trans-
lates into O(n ∗ logn) operations to identify n tags.
Whereas, YA-TRAP would only need O(n) operations
for the same task (since the same Tr-specific hash table
is used for all lookups and each lookup takes constant
time).

7.1 Drawbacks and Extensions

YA-TRAP has two potential drawbacks.
First, it is susceptible to a trivial denial-of-service

(DoS) attack: the adversary can send a wildly inac-
curate timestamp (Tr) and incapacitate a tag either
fully (if the timestamp is the maximal allowed) or tem-
porarily. Although DoS resistance is not among our
key goals, it is still an important issue. Unfortunately,
there does not seem to be an easy way of addressing
this issue (without additional computation on the tag
and extra bandwidth).

4If tag responses are collected over multiple time intervals,
the reader needs to group responses according to the Tr value
used.

Second, the protocol makes an implicit assumption
that a tag is never authenticated (interrogated) more
than once within the same interval. This has some
bearing on the choice of the interval. A relatively short
interval (e.g., a second) makes the assumption realis-
tic for many settings. However, it translates into heavy
computational burden for the server, i.e., frequent com-
putation of ephemeral tables. On the other hand, a
longer interval (e.g., an hour) results in much lower
server burden, albeit, it may over-stretch our assump-
tion, since a tag may need to be interrogated more than
once per interval. One solution is to sacrifice some un-
traceability in favor of increased functionality, i.e., al-
low a tag to iterate over the same time value (accept
Tr = Tt) a fixed number of times, say k. This would
entail storing an additional counter on the tag; once the
counter for the same Tt reaches k, the tag refuses to ac-
cept Tr = Tt and starts responding with random values
as in Step 2.2 in the protocol. The resulting protocol
would be k-traceable – an adversary would be able to
track a tag over at most k sessions, with the same Tr

value. (Note that the adversary can track actively, by
interrogating the tag, or passively, by eavesdropping on
interactions between the tag and valid readers.)

7.2 Efficiency/Cost Considerations

The proposed protocol is fairly efficient. When an ac-
ceptable Tr is received, the computational burden on
the tag is limited to a single keyed hash computation
(e.g., an HMAC). Otherwise, a tag is required to gener-
ate a pseudo-random value (via PRNG), which, as dis-
cussed earlier, also amounts to a single HMAC. Again,
we stress that the two cases are indistinguishable with
respect to their runtime. The reader is not involved
computationally in YA-TRAP, since it neither gener-
ates nor checks any values. The computational load
on the server is not light, by any means. However,
it does not require any on-demand (real-time) compu-
tation other than a simple table look-up. The server
has the freedom to (pre-)compute ephemeral tables at
any time. The amount of pre-computation would likely
depend on available storage, among other factors.

The efficiency of our protocol as far as server load
can be illustrated by comparison. One simple and se-
cure approach to untraceable tag identification involves
the reader sending a random challenge Rr to the tag
and the tag replying with keyed hash (or encryption)
of the reader’s challenge Ht and the tag’s own random
confounder/nonce Rt. The reader forwards the reply –
comprised of Ht, Rr and Rt – to the server. In order
to identify the tag, the server needs to perform O(n)
on-line keyed hashes (or encryptions), where n is the

total number of tags. Although, on the average, the
server only needs to perform n/2 operations to identify
the tag, the work is essentially wasted, i.e., it has no
use for any other protocol sessions. Whereas, in our
case, an ephemeral table is can be used for multiple
(as many as n) protocol sessions.

The same issues arise when comparing YA-TRAP
with the recent work in [2], which represents the state-
of-the-art. Although the MSW protocol [2] is much
more efficient than the näıve scheme above, it requires
the tag to store O(logn) keys and perform O(logn)
pseudo-random function (PRF) operations. YA-TRAP
requires a single key on the tag and a single PRF.

As far as cost, our requirement for non-volatile RAM
elevate the cost above that of cheapest tags, i.e., less
than $0.10 per tag. In this sense, YA-TRAP is more
expensive than the one of the MSW protocols which
makes do without non-volatile RAM (it only needs a
physical random number generator).5

8. What is not covered in this paper?

Due to space limitations, security properties of YA-
TRAP are not addressed. However, most of the se-
curity analysis in [1] applies to YA-TRAP. The full
version of this paper will include a detailed discussion.
Also overview of related work is deferred to the full
version of this paper. While we use [2] as one point of
comparison, a recent protocol by Avoine and Oechslin
[3] is similar in spirit (but very different in technical
details) from YA-TRAP.

Acknowledgements

Many thanks to David Molnar, Ari Juels, Einar Myk-
letun and Joao Girao for their helpful comments.

References

[1] A. Herzberg, H. Krawczyk and G. Tsudik, On Traveling
Incognito, IEEE Workshop on Mobile Systems and Applica-
tions, December 1994.

[2] D. Molnar, A. Soppera and D. Wagner, A Scalable, Dele-
gatable Pseudonym Protocol Enabling Ownership Transfer of
RFID Tags, Workshop in Selected Areas in Cryptography,
August 2005.

[3] G. Avoine and P. Oechslin, A Scalable and Provably Secure
Hash-Based RFID Protocol, IEEE PerSec Workshop, March
2005.

5The other protocol presented in [2] requires tags to have
non-volatile storage for a a counter.

