Reducing Time Complexity in RFID Systems

Gildas Avoine Etienne Dysli Philippe Oechslin

EPFL, Lausanne, Switzerland

Outline

- 1 Introduction
- 2 Description and Attack of CR/MW
- 3 Improvement of OSK Using a Time-Memory Trade-Off
- 4 Conclusion

Outline

Introduction
 RFID Systems
 Security and Privacy Issues
 Cryptography for RFID Tags
 Existing Challenge-Response Protocols

RFID Systems

Security and Privacy Issues

Classical attacks

- denial of service
- impersonation of tags
- channel eavesdropping

Tags are vulnerable because they lack computational power and storage capacity.

Traceability

Given two tag-reader interactions, an adversary should not be able to determine whether the same tag is involved in both interactions.

Privacy Issues Traceability

Library example

- RFID tags used to label books
- automatic check-in and check-out
- eavesdropper near library gates could spy on RFID communications
- malicious reader could identify books carried by people

Tracing RFID tags is easier than with other technologies (GSM, Bluetooth, etc.)

- tags cannot be switched off
- tags answer without the agreement of their bearer
- tags have a long life (no battery)
- · tags are almost invisible
- lost-cost readers and increasing communication range

Solutions to the Privacy Problem

Palliative

- kill keys
- blocker tags
- Faraday cages
- policies

Definitive

 Design an RFID protocol that allows only authorized parties to identify a tag while an adversary is neither able to identify it nor trace it.

Cryptography for RFID Tags

Private authentication

- privacy of prover (tag) has to be preserved
- · mutual authentication of reader and tag

Trade-off between capacity and cost

- asymmetric crypto is too heavy for tags
- · cheapest tags have no crypto at all

We will consider tags with symmetric cryptography capabilities (hash function, block cipher).

Existing Challenge-Response Protocols

Basic PRF-based private authentication protocol by Molnar and Wagner

Does not scale well with many tags! denoted CR thereafter

Using Symmetric Cryptography

Number of keys

- 1 secret for all tags → bad! tags are not tamper-proof
- 1 secret per tag → expensive time complexity

Tag identification complexity

- one tag: O(n) operations (exhaustive search)
- whole system (n tags): $O(n^2)$ operations
- avoid system bottleneck (real-time library inventory)

Outline

2 Description and Attack of CR/MW Molnar and Wagner's scheme Privacy-Weakening Attack

Molnar and Wagner's scheme

Setup

- n: number of tags in the system
- δ : branching factor
- ℓ : depth of the tree = $\log_{\delta}(n)$

Molnar and Wagner's scheme

Interrogation

- · tag is queried level by level from root to leaf
- if authentication fails at one level → tag rejects reader
- instead of searching once among n secrets, search ℓ times among δ secrets

Molnar and Wagner's scheme Time complexity

Time complexity

- identifying one tag: $\delta \log_{\delta}(n)$ operations
- identifying n tags: $n\delta \log_{\delta}(n)$ operations

Example

- library with 2²⁰ tagged books, 2²³ operations/second
- identifying one tag takes 0.002 milliseconds ($\delta = 2$)
- identifying the whole system takes 2 seconds ($\delta = 2$)

Privacy-Weakening Attack

Goal

Distinguish one tag among others

Course of the attack

- attacker tampers with k tags and obtains their identifiers
- 2 chooses any target T
- 3 can query T at will but cannot tamper with it
- 4 attacker queries T₁ and T₂ to determine which of the two is T

Tracing the Tags

Operation

- · tags share secrets
- by opening tags, an attacker can learn parts of other tags' secrets
- at each tree level, the attacker knows one or more secrets and uses these to try to identify its target
- probability of success depends on the number of known branches at each level

Tracing the Tags

Five cases

- \bullet T_1 on known branch and T_2 on unknown branch
 - → attack succeeds
- 2 T_2 on known branch and T_1 on unknown branch
 - → attack succeeds
- 3 T_1 and T_2 both on known but different branches
 - → attack succeeds
- 4 T_1 and T_2 both on unknown branches
 - → attack definitively fails
- **5** T_1 and T_2 both on the same known branch
 - \rightarrow attack fails at level i but can move on to level i+1

Probability that the attack succeeds is

$$\frac{k_1}{\delta^2} (2\delta - k_1 - 1) + \sum_{i=2}^{\ell} \left(\frac{k_i}{\delta^2} (2\delta - k_i - 1) \prod_{j=1}^{i-1} \frac{k_j}{\delta^2} \right),$$

where

$$k_1 = \delta \left(1 - (1 - \frac{1}{\delta})^k \right)$$
 $k_{i>1} = \delta \left(1 - (1 - \frac{1}{\delta})^{g(k_i)} \right)$

and

$$g(k_i) = k \prod_{j=1}^{i-1} \frac{1}{k_j}.$$

Tracing the Tags Results

Tracing the Tags Results

k δ	2	20	100	500	1000
1	66.6%	9.5%	1.9%	0.3%	0.1%
20	95.5%	83.9%	32.9%	7.6%	3.9%
50	98.2%	94.9%	63.0%	18.1%	9.5%
100	99.1%	95.4%	85.0%	32.9%	18.1%
200	99.5%	96.2%	97.3%	55.0%	32.9%

Outline

3 Improvement of OSK Using a Time-Memory Trade-Off Ohkubo, Suzuki and Kinoshita's Protocol Time-Memory Trade-Off Avoine and Oechslin's Improvement

Ohkubo, Suzuki and Kinoshita's Protocol

Setup

- 2 hash functions G and H
- tag T_i stores a random identifier s_i^1
- system database contains $\{s_i^1 | 1 \le i \le n\}$

Interrogation

no mutual authentication

Ohkubo, Suzuki and Kinoshita's Protocol

Identification

From each n initial identifiers s_i^1 , the system computes the hash chains until it finds r_i^k or until it reaches a given maximum limit m on the chain length.

$$s_{1}^{1} \rightarrow r_{1}^{1} \quad r_{1}^{2} \quad \dots \quad r_{1}^{m-1} \quad r_{1}^{m}$$
 $\vdots \rightarrow \dots \quad \dots \quad \vdots$
 $s_{i}^{1} \rightarrow \dots \quad \dots \quad \left[r_{i}^{k} = G(H^{k-1}(s_{i}^{1}))\right] \quad \dots \quad \dots \quad r_{i}^{m}$
 $\vdots \rightarrow \dots \quad \dots \quad \vdots$
 $s_{n}^{1} \rightarrow r_{n}^{1} \quad r_{n}^{2} \quad \dots \quad \dots \quad r_{n}^{m-1} \quad r_{n}^{m}$

Complexity

 $m \cdot n$ hash operations (average)

Time-Memory Trade-Off

Invert a one-way function $F: X \rightarrow Y$

$$\begin{bmatrix} x_1 \\ x_{m+1} \\ \vdots \end{bmatrix} \xrightarrow{F} y_1 \xrightarrow{R} x_2 \xrightarrow{F} \dots \xrightarrow{F} y_m$$

$$\xrightarrow{F} y_{m+1} \xrightarrow{R} x_{m+2} \xrightarrow{F} \dots \xrightarrow{F} y_{2m}$$

$$\vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots$$

- Reduction function R: Y → X that generates an arbitrary input of F from one of its outputs.
- Given one output y_i of F, we generate a chain starting at y_i : $y_i \stackrel{R}{\rightarrow} x_i \stackrel{F}{\rightarrow} y_{i+1} \stackrel{R}{\rightarrow} \dots$ until we find an end of a chain. We can then regenerate the complete chain and find x_{i-1} .
- Computation time is $T \propto N^2/M^2$.

Avoine and Oechslin's Improvement

Applied to OSK

- input space of F must cover only existing identifiers, otherwise the system has no advantage over an attacker
- $F: (i,k) \mapsto r_i^k = G(H^{k-1}(s_i^1)) \quad 1 \le i \le n, \ 1 \le k \le m$
- $R: r_i^k \mapsto (i', k')$ $1 \le i' \le n, \ 1 \le k' \le m$ e.g. $R(r) = (1 + (r \mod n), 1 + (\left|\frac{r}{n}\right| \mod m))$
- complexity with optimal parameters and chosen amount of memory

$$T \approx \frac{3^3}{2^3} \frac{m^3 \gamma}{c^3 \mu^2}$$

Avoine and Oechslin's Improvement Results

Example

- library with 2²⁰ tagged books, hash chain length is 2⁷
- 2²³ hash operations/second, 1.25 GB RAM
- identifying one tag takes 0.002 milliseconds
- identifying the whole system takes 2 seconds
- precomputations require 17 minutes

Conclusion

Complexity comparison

- both protocols are parameterizable
- storage: on tags and in the system
- · tag identification time

Scheme (parameter)	Time (milliseconds)		
CR	62.500		
CR/MW ($\delta=2^{10}$)	0.122		
CR/MW (δ = 2)	0.002		
OSK	16'000.000		
OSK/AO (342 MB)	0.122		
OSK/AO (1.25 GB)	0.002		

Conclusion

Privacy and Performance

- CR secure but CR/MW degrades privacy (when tags are not considered tamper-proof)
- CR/MW trade-off between complexity and privacy
- OSK/AO can have the same performance as CR/MW