How Secret-sharing can Defeat Terrorist Fraud

Gildas Avoine¹ Cédric Lauradoux² Benjamin Martin¹

¹Université catholique de Louvain Belgium

² INRIA, Université de Lyon France

17 June 2011

Plan

1 General Context

2 Relay Attacks

3 Distance Bounding Protocols

4 Contribution

Wireless Authentication ISO 9798-2

Definition (From the Handbook of Applied Cryptography)

An *authentication* is a process whereby one party is assured (through acquisition of corroborative evidence) of the identity of a second party involved in a protocol, and that the second has actually participated (*i.e.*, is active at, or immediately prior to, the time evidence is acquired).

Relay Attack Mafia fraud

Terrorist Fraud

- First mention : J.H.Conway 1974
- Reintroduced by Desmedt et al 87

First mention : Bengio et al 91

First mention : Brands et al 93

Which counter measure?

Measuring the time spent for an exchange.

Terrorist Fraud An example : 2010 Chess Olympiad

Terrorist Fraud The notions

Problematic on terrorist fraud

- Bart helps the adversaries.
- Bart wants its key to remain secret.

What we want to achieve

- If Bart shares too many informations, the protocol must reveal its key.
- If Bart is honest, the protocol must not reveal its key

The solution

The secret-sharing. First use by Bussard and Bagga in 2005.

Secret-sharing Definitions

Secret-sharing

- A dealer shares a secret key *s* between *n* parties.
- Each party $i \in [1, n]$ receives a share.
- **Predefined groups** of parties can cooperate to recover *s*.
- Any other group of parties have no idea on what is s.

Threshold cryptography

Let Λ be an (n, k) threshold scheme :

- A dealer shares a secret key *s* between *n* parties.
- Each party $i \in [1, n]$ receives a share.
- Any group of k participants can cooperate to recover s.
- Groups of *a* < *k* participants cannot get anything on *s*.

secret x

secret x

slow phase

fast phase

Gildas Avoine, Cédric Lauradoux, Benjamin Martin – How Secret-sharing can Defeat Terrorist Fraud

secret x

secret x

slow phase

fast phase

Gildas Avoine, Cédric Lauradoux, Benjamin Martin – How Secret-sharing can Defeat Terrorist Fraud

Gildas Avoine, Cédric Lauradoux, Benjamin Martin - How Secret-sharing can Defeat Terrorist Fraud

Gildas Avoine, Cédric Lauradoux, Benjamin Martin - How Secret-sharing can Defeat Terrorist Fraud

Gildas Avoine, Cédric Lauradoux, Benjamin Martin - How Secret-sharing can Defeat Terrorist Fraud

Hancke and Khun 2005

Protocol analysis

Mafia fraud strategies

- Post-ask strategy : $\frac{1}{2}$
- Pre-ask strategy : $\frac{3}{4}$

Mafia fraud success probability

The adversary chooses the pre-ask strategy, and succeeds with probability :

$$\Pr_{MF} = \left(\frac{3}{4}\right)^n$$

Terrorist fraud success probability

The prover provides R^0 and R^1 to the adversary.

$$\mathsf{Pr}_{\mathrm{TF}} = 1.$$

Gildas Avoine, Cédric Lauradoux, Benjamin Martin – How Secret-sharing can Defeat Terrorist Fraud

Our Contribution

Refinement of the adversary model

Based on the knowledge of the protocol output. Introduction of the three adversary types. Closer look on key recovery attacks. Review of existing solutions.

New approach on terrorist fraud

(Explicit) introduction of secret sharing. Use/misuse of the secret-sharing in distance bounding. New protocols : TDB,TTDB.

Threshold Distance Bounding (TDB)

Distance Bounding and secret-sharing How to compute \mathcal{R} ?

Answer computation

If Bart receives the challenges (3, 1, 2, 2), he replies :

 $\begin{pmatrix} r_{1,1} & r_{1,2} & r_{1,3} & r_{1,4} \\ r_{2,1} & r_{2,2} & r_{2,3} & r_{2,4} \\ r_{3,1} & r_{3,2} & r_{3,3} & r_{3,4} \end{pmatrix}.$

Matrix computation

• The two first rows are the output of $PRF(x, N_P, N_V)$

• The last row of \mathcal{R} is given by :

$$\forall i \in [1, 4], r_{3,i} = s_i \oplus r_{1,i} \oplus r_{2,i}$$

Each column of \mathcal{R} is a **system of shares** obtained from Λ for the coordinate s_i ($s = (s_1, s_2, s_3, s_4)$).

Distance Bounding and secret-sharing

General case

Our protocol can be adapted to any $n \times m$ matrix \mathcal{R} :

- Λ is an (n, k) threshold scheme;
- *m* is both the number of rounds and the key size.

Our example

• Knowing $r_{1,i}$, $r_{2,i}$ and $r_{3,i} \Rightarrow s_i$.

$$m = 4.$$

Question

How to safely choose the parameters n and k?

The adversary, Eve, is a man-in-the-middle with some extra capabilities :

- BD-ADV Eve is not able to distinguish a FAILURE from a SUCCESS of the protocol.
- **RES-ADV** Eve knows when there is a FAILURE or a SUCCESS.
- RD-ADV Eve is able to determine the result of each round of interactive phase.

Key recovery attacks How many shares can Bart provide to Eve?

Result of the attack

For a given round *i*, Eve obtains :

- α shares from Bart;
- How many shares have Eve at the end of the protocol?
 - **For** BD-ADV, α .
 - For RD-ADV, $\alpha + 1$.
 - For RES-ADV α but can decimate the key space.

Conclusion

 $\alpha = k - 1$ is a bad idea, for RES-ADV and RD-ADV. Thus, $\alpha \leq k - 2$ is the maximum value to prevent any key leakage.

Key recovery attacks Mafia Post-ask (fault injection)

Gildas Avoine, Cédric Lauradoux, Benjamin Martin – How Secret-sharing can Defeat Terrorist Fraud

Key recovery attacks How many shares can Eve recover?

Result of the attack

For a given round i, Eve obtains :

- $r_{\hat{c}_i,i}$ from Bart;
- **Is** \hat{r}_i a share?
 - BD-ADV \rightarrow Eve has no clue if \hat{r}_i is a share or not !
 - RES-ADV \rightarrow Eve knows if \hat{r}_i is a share or not !
 - RD-ADV \rightarrow Eve knows if \hat{r}_i is a share or not !

Conclusion

k = 2 is a bad idea, for RES-ADV and RD-ADV.

Thus, $k \ge 3$ is the minimal setup to prevent key leakage against any adversary.

What can be achieved? Performance of our protocol

Summary

- No key leakage
- Mafia fraud success probability : $\left(\frac{2}{3}\right)^{m}$.

• Terrorist fraud success probability : $\left(\frac{2}{3}\right)^m$.

Interpretation

The mafia and terrorist fraud have the same probability of success : Involving Bart does not help the adversary !

Comparison

Protocol	BD-ADV	RES-ADV	RD-ADV
Tu and Piramithu	 ✓ 	*	*
Reid <i>et al.</i>	 ✓ 	★ (*)	*
Swiss-Knife	 ✓ 	 ✓ 	≭/✔ (†)
Bussard and Bagga	 ✓ 	$igstar{}$ $igstar{}$ \to $igstar{}$ (\ddagger)	$igstar{}$ $igstar{}$ \to $igstar{}$ (\ddagger)
TDB $(n \ge 3, k \ge 3)$	 ✓ 	 ✓ 	 ✓
TTDB	 ✓ 	 ✓ 	 ✓

- Computation of the shares using a pseudo-random permutation protects against RES-ADV. Removed in the final version.
- [†] For the Swiss-knife, everything depends on what can be observed on the RESULT PHASE and how Alice helps Eve.
- ‡ A modified RESULT PHASE resists to RES-ADV and BD-ADV.

Secret-Sharing :

- + limits the evilness of Bart;
- - the risk of key information leakage.

Implementation, Implementation...

- Our protocols are not implemented;
- The RESULT PHASE is critical in the terrorist fraud;
- Appropriate secret-sharing scheme can solve this problem.

Any questions?